Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with limited understanding of etiology. Studies in mice showed that both acinar and ductal cells of the pancreas can be targeted by combination of oncogenic Kras and p53 mutations to form PDAC. How the transforming capacities of pancreatic cells are constrained, and whether a subset of cells could serve as a prime target for oncogenic transformation, remain obscure. Here we report that expression of a Notch modulator, Lunatic Fringe (Lfng), is restricted to a limited number of cells with centroacinar location and morphology in the adult pancreas. Lfng-expressing cells are preferentially targeted by oncogenic Kras along with p53 deletion to form PDAC, and deletion of Lfng blocks tumor initiation from these cells. Notch3 is a functional Notch receptor for PDAC initiation and progression in this context. Lfng is upregulated in acinar- and ductal-derived PDAC and its deletion suppresses these tumors. Finally, high LFNG expression is associated with high grade and poor survival in human patients. Taken together, Lfng marks a centroacinar subpopulation that is uniquely susceptible to oncogenic transformation when p53 is lost, and Lfng functions as an oncogene in all three lineages of the exocrine pancreas.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-024-03226-7DOI Listing

Publication Analysis

Top Keywords

oncogenic kras
8
kras p53
8
form pdac
8
oncogenic transformation
8
pdac deletion
8
cells
6
lfng
6
pdac
5
lfng-expressing centroacinar
4
centroacinar cell
4

Similar Publications

Enterocyte-like differentiation defines metabolic gene signatures of CMS3 colorectal cancers and provides therapeutic vulnerability.

Nat Commun

January 2025

Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

Colorectal cancer (CRC) is stratified into four consensus molecular subtypes (CMS1-4). CMS3 represents the metabolic subtype, but its wiring remains largely undefined. To identify the underlying tumorigenesis of CMS3, organoids derived from 16 genetically engineered mouse models are analyzed.

View Article and Find Full Text PDF

Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein.

SAR QSAR Environ Res

January 2025

Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.

Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation.

View Article and Find Full Text PDF

Prognostic Value of Retinoblastoma in Small Intestinal Adenocarcinoma: A Multicenter Retrospective Study.

J Korean Med Sci

December 2024

Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Background: The retinoblastoma (RB) protein which is encoded by gene selectively provides a cell type-specific function in malignancies. In colorectal carcinoma, RB has been highly expressed and related cyclin/cyclin-dependent kinase 4/6 inhibitors have shown improved therapeutic effects in some patients. However, little is known about RB in small intestinal adenocarcinoma (SIAC).

View Article and Find Full Text PDF

Breast cancer (BC) is a multifactorial disease where microRNA (miRNA)-mediated dysregulated gene expression plays a pivotal role in tumorigenesis, progression, and clinical outcomes. Genetic variation, particularly SNPs in miRNA sequences and the 3' untranslated regions (3'UTRs) of their target genes, can disrupt miRNA-mRNA interactions, leading to altered gene expression. Despite several existing databases providing insights into various aspects of miRNAs and their target genes in association with the development of the disease.

View Article and Find Full Text PDF

Background: Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!