Chromosome-level genome assembly of the smallscale yellowfin (Plagiognathops microlepis).

Sci Data

Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.

Published: November 2024

The small-scale yellowfin (Plagiognathops microlepis) is a highly valued species in East Asian aquaculture due to its adaptability and high yield. However, the lack of genomic data has impeded genetic research and breeding efforts. In this study, we utilize PacBio Hifi long-read sequencing and Hi-C technologies to construct a highly detailed genome of P. microlepis at the chromosomal level. The assembly encompasses 976.41 Mb, with an exceptional 99.84% distribution across 24 chromosomes. Notably, the contig N50 was 34.41 Mb and scaffold N50 was 38.38 Mb. The completeness of the P. microlepis genome assembly is underscored by a BUSCO score of 98.08%. A total of 25,389 protein-coding genes were identified, with a BUSCO score of 96.98%, and 99.85% of these genes were functionally annotated. Synteny relationships at the chromosome level with Danio rerio and Chanodichthys erythropterus genomes uncover small-scale chromosomal rearrangements. This high-fidelity genome assembly serves as a pivotal resource for forthcoming endeavors such as the genome structure, functional elements, comparative genomics, and evolutionary characteristics of P. microlepis and its relative species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568295PMC
http://dx.doi.org/10.1038/s41597-024-04105-2DOI Listing

Publication Analysis

Top Keywords

genome assembly
12
yellowfin plagiognathops
8
plagiognathops microlepis
8
busco score
8
microlepis
5
chromosome-level genome
4
assembly
4
assembly smallscale
4
smallscale yellowfin
4
microlepis small-scale
4

Similar Publications

Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.

Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations.

View Article and Find Full Text PDF

Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.

View Article and Find Full Text PDF

Somion occarium is a wood-decaying bracket fungus belonging to an order known to be rich in useful chemical compounds. Despite its widespread distribution, S. occarium has been assessed as endangered on at least one national Red List, presumably due to loss of old-growth forest habitat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!