Rhizosphere ecological factors that affect sugarcane ratoons are crucial components in the feedback mechanisms between the sugarcane plant and soil environment. However, systematic investigations on these dynamics are lacking. Therefore, this study investigated the relationship between sugarcane ratoon decline and rhizosphere ecological factors. In first-year sugarcane ratoons, ecological factors such as soil available potassium content, soil nitrogen fixation, and soil peroxidase activity were significantly positively correlated with sugarcane growth (P < 0.05) compared to that of third-year sugarcane ratoons. Significant intergroup disparities in the rhizosphere soil microbial community structure were observed based on different ratoon ages (P < 0.01), while highly significant intergroup differences in endophytic microbial community structure were observed based on a Jaccard distance analysis (P < 0.01). Generalised additive model analysis revealed a significant positive correlation (P < 0.05) between sugarcane growth properties and the alpha diversity of rhizosphere soil bacteria and endophytic bacteria but a predominantly negative correlation (P > 0.05) between the alpha diversity of endophytic fungi and key sugarcane growth indicators. The deterioration of mainly non-microbial ecological factors in rhizosphere soil (P < 0.05) with increasing ratoon age may represent a significant factor contributing to sugarcane ratoon decline. The fungal community significantly impacted soil enzyme activity, while the microbial community indirectly influenced sugarcane yield through its effect on soil enzyme activity. Therefore, endophytic fungi, particularly Ascomycota species, may play a crucial role in sugarcane diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568144 | PMC |
http://dx.doi.org/10.1038/s41598-024-70613-1 | DOI Listing |
Sci Rep
January 2025
School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.
Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Earth and Environmental Sciences and Engineering, Institute of Exploration Geosciences, University of Miskolc, Miskolc, Hungary.
The growing demand for clean and sustainable energy sources has prompted the investigation of numerous renewable and ecologically friendly options. Among these, geothermal energy is particularly noteworthy because of its widespread availability, compact size, and consistent, weather-independent power production. A geothermal play fairway analysis (GPFA) model was created for the study area, which is located in Békés county, southeastern Hungary.
View Article and Find Full Text PDFFam Process
March 2025
Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA.
Parent-child relationship quality has critical implications for parental emotional well-being across the lifespan. The present study assessed how relationship quality is related to daily encounters between parents and children, how those encounters are linked with parents' mood, and how these associations vary by age. Participants (N = 129, ages 33-91) reported baseline relationship quality with a total of 337 children (ages 1-69).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, China.
Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:
The resource utilization of municipal solid waste incineration fly ash (MSWI FA) has been widely concerned at present. The chlorine removal from MSWI FA is of great significance for controlling environmental risk and improving materials properties in the process of its resource utilization. This work specifically proposes to divide the chlorine in MSWI FA into inorganic chloride and organic chloride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!