Quantitative spinal cord imaging: Early ALS diagnosis and monitoring of disease progression.

Rev Neurol (Paris)

Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France; Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France. Electronic address:

Published: November 2024

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons in the cortex, brainstem, and spinal cord. This degeneration leads to muscular weakness, progressively impairing motor functions and ultimately resulting in respiratory failure. The clinical, genetic, and pathological heterogeneity of ALS, combined with the absence of reliable biomarkers, significantly challenge the efficacy of therapeutic trials. Despite these hurdles, neuroimaging, and particularly spinal cord imaging, has emerged as a promising tool. It provides insights into the involvement of both upper and lower motor neurons. Quantitative spinal imaging has the potential to facilitate early diagnosis, enable accurate monitoring of disease progression, and refine the design of clinical trials. In this review, we explore the utility of spinal cord imaging within the broader context of developing spinal imaging biomarkers in ALS. We focus on a both diagnostic and prognostic biomarker in ALS, highlighting its pivotal role in elucidating the disease's underlying pathology. We also discuss the existing limitations and future avenues for research, aiming to bridge the translational gap between academic research and its application in clinical practice and therapeutic trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurol.2024.10.005DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
cord imaging
12
quantitative spinal
8
monitoring disease
8
disease progression
8
motor neurons
8
therapeutic trials
8
spinal imaging
8
imaging
5
als
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!