The intricate interplay between lamins and chromatin underpins the structural integrity and functional organization of the eukaryotic nucleus. Lamins, type V intermediate filament proteins, form a robust meshwork beneath the inner nuclear membrane that is crucial for sustaining nuclear architecture through interactions with lamin-associated domains (LADs). LADs are predominantly heterochromatic regions in which compacted chromatin is enriched at the nuclear periphery, interacting with lamins and lamin-associated proteins. Disruptions of these interactions are implicated in a spectrum of diseases, including laminopathies, cancer, and age-related pathologies, highlighting the importance of lamin-LAD interactions. Thus, a detailed understanding of lamin-chromatin interactions may provide new insights into chromatin organization and shed light on the mechanism behind certain disease states. Here, we discuss the current state of knowledge of lamin-chromatin interactions from a biochemical and structural point of view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbior.2024.101059 | DOI Listing |
Autophagy
January 2025
Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA.
Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).
View Article and Find Full Text PDFNat Cell Biol
January 2025
CNRS UMR144 - UMR3664, Institut Curie, Sorbonne Université, PSL Research University, Paris, France.
Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia.
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
A large fraction of the genome interacts with the nuclear periphery through lamina-associated domains (LADs), repressive regions which play an important role in genome organization and gene regulation across development. Despite much work, LAD structure and regulation are not fully understood, and a mounting number of studies have identified numerous genetic and epigenetic differences within LADs, demonstrating they are not a uniform group. Here we profile Lamin B1, HP1β, H3K9me3, H3K9me2, H3K27me3, H3K14ac, H3K27ac, and H3K9ac in MEF cell lines derived from the same mouse colony and cluster LADs based on the abundance and distribution of these features across LADs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!