Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein cysteine residues are sensitive to redox-regulating molecules, including reactive sulfur species (RSS). As an important member of the RSS family, polysulfides are known to react with protein cysteines to form persulfides and disulfides, both affecting protein functions. In this work, we studied how polysulfides could impact cysteine proteases through careful mechanistic and kinetic studies. The model protein papain was treated with different polysulfides to elucidate the efficacy of polysulfides as inhibitors for this protein. We also explored the effects of different reductants that could regenerate papain activity after polysulfide-mediated inhibition. A triarylphosphine reagent, TXPTS, was found to be efficient in differentiating between papain persulfidation and disulfide formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.4c00573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!