A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integration of CeO-Based Memristor with Vertically Aligned Nanocomposite Thin Film: Enabling Selective Conductive Filament Formation for High-Performance Electronic Synapses. | LitMetric

The CeO-based memristor has attracted significant attention due to its intrinsic resistive switching (RS) properties, large on/off ratio, and great plasticity, making it a promising candidate for artificial synapses. However, significant challenges such as high power consumption and poor device reliability hinder its broad application in neuromorphic microchips. To tackle these issues, in this work, we design a novel bilayer (BL) memristor by integrating a CeO-based memristor with a Co-CeO vertically aligned nanocomposite (VAN) layer and compare it with the single layer (SL) memristor. Preliminary electrical testing reveals that the BL memristor offers a reduced set/reset voltage (∼67% lower), a higher on/off ratio (∼5 × 10), enhanced device reliability, and improved device-to-device variation compared to the SL memristor. Insight from COMSOL simulation, coupled with microstructural analysis, provides a comprehensive elucidation on how the VAN layer facilitates the selective conductive filament (CF) formation. Subsequently, the plasticity of the BL memristor is evaluated through long-term potentiation/depression (LTP/LTD), paired-pulse facilitation (PPF), and spike-time-dependent plasticity (STDP). The spiking neural network (SNN) built upon the BL memristor achieves remarkable accuracy (∼94%) after only 12 iterations, underscoring its potential for high-performance neural networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615853PMC
http://dx.doi.org/10.1021/acsami.4c10687DOI Listing

Publication Analysis

Top Keywords

ceo-based memristor
12
memristor
9
vertically aligned
8
aligned nanocomposite
8
selective conductive
8
conductive filament
8
filament formation
8
on/off ratio
8
device reliability
8
van layer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!