AI Article Synopsis

  • HCP-Ca nanoparticles were created by adding varying amounts of CaCl to heated copra protein, resulting in increased HCP aggregation shown by higher turbidity levels.
  • The nanoparticles displayed a rough surface and stabilized through intermolecular forces and calcium ions forming salt bridges, which also improved the stability of high internal phase Pickering emulsions (HIPPEs).
  • The study highlights how the addition of calcium enhances the properties of HCP-Ca HIPPEs, such as viscoelasticity, hardness, and adhesiveness, and suggests potential for innovative food-grade applications using waste materials.

Article Abstract

HCP-Ca nanoparticles were prepared by incorporating varying concentrations of CaCl into heated copra protein (HCP). The results showed a positive correlation between Ca concentration and turbidity, indicating greater HCP aggregation with increasing Ca levels. Microscopy analysis revealed that HCP-Ca nanoparticles had a rough surface morphology. Intermolecular forces such as disulfide bonds, hydrophobic interactions, and hydrogen bonds were key in the conformation of HCP aggregates, with calcium ions enhancing stability by forming salt bridges. HCP-Ca nanoparticle-based high internal phase Pickering emulsions (HIPPEs) were also fabricated using homogenization-centrifugation treatment. The nanoparticles showed contact angles of 87.8° to 98.3°, particle sizes between 80.42 and 80.95 nm, and the HIPPEs had zeta potentials ranging from -23 to -39 mV. The addition of Ca enhanced stability by forming salt bridges, reducing particle size, and altering size distributions. Rheological and texture analysis showed that Ca addition significantly improved the viscoelasticity of HCP-Ca nanoparticle-based HIPPEs, as well as increasing hardness and adhesiveness. Optical microscopy and magnetic imaging techniques revealed details about emulsion formation and oil-water distribution in HCP-Ca nanoparticle-based HIPPEs. The excellent printing stability and structural versatility of HCP-Ca nanoparticle-based HIPPEs allowed the formation of complex 3D structures, offering a valuable approach for fabricating processable and editable HIPPEs from waste materials. This paper aims to develop a food-grade copra protein-based Pickering HIPPE and explore differences in fabrication methods, providing new insights into the design of innovative Pickering stabilizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137670DOI Listing

Publication Analysis

Top Keywords

hcp-ca nanoparticle-based
16
nanoparticle-based hippes
12
phase pickering
8
copra protein
8
hcp-ca nanoparticles
8
stability forming
8
forming salt
8
salt bridges
8
hcp-ca
6
hippes
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!