Polyvinyl alcohol (PVA) and nanocellulose (NC) composite systems are promising candidates with exciting implications for sustainability, adaptability, and future uses. This research investigates the synergistic features of PVA and nanocellulose, focusing on their renewable and biodegradable nature as important contributors to sustainable material development. An overview of various processing techniques of PVA/NC composites, and their morphological, thermo-mechanical, barrier and biodegradable properties is examined, revealing its enhanced performance attributes compared to conventional materials. This review also discusses the numerous applications of PVA and nanocellulose composites in packaging, biomedical engineering, and environmental remediation. Furthermore, the discussion expands on the potential future applications of these composites, emphasizing their importance in tackling critical global concerns such as pollution reduction, resource conservation, and healthcare breakthroughs. With ongoing research focusing on functionalisation strategies and scalable production methods, PVA and nanocellulose composites are poised to revolutionize multiple sectors, offering sustainable solutions that align with the principles of circular economy and environmental stewardship. Finally, this review emphasises the enormous contributions of PVA and nanocellulose composites to sustainable material innovation, their broad applicability across industries, and their promise to shape a more resilient and environmentally friendly future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137176 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry Materials Engineering, Zhejiang A&F University, Zhejiang Province, Hangzhou 10341, PR China.
Using deep eutectic solvents (DES) to pretreat wheat straw (WS) and extract lignin-containing nanocellulose (LCNC). Acrylic acid/choline chloride (AA/ChCl) polymerizable deep eutectic solvents (PDES) were used as the primary polymerization network, combined with polyvinyl alcohol (PVA). Lignocellulose nanocrystals (LCNC) oxidized by sodium periodate were prepared as dialdehyde-based nanocellulose (DCNC) to serve as the crosslinking agent.
View Article and Find Full Text PDFFood Chem
February 2025
College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China. Electronic address:
Herein, we prepared a new aerogel-based preservation pad using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), whey protein isolate (WPI), and cinnamon essential oil (CEO) as raw materials. The physicochemicals of the aerogel preservation pads were studied, and their effects on beef preservation were evaluated. The results showed that the aerogel monomers were crosslinked by hydrogen, ester bonds, and electrostatic interactions in the aerogels, and there were three-dimensional pores in the aerogels.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:
There is an increasing demand of food packaging materials from sustainable bio- polymers. In this study, tannin-cellulose nanocrystal (TCNCs) fillers were first prepared using dialdehyde cellulose nanocrystal (DACNCs) and tannin through the nucleophilic addition reaction, and then added to PVA matrix as reinforcement fillers to fabricate active food packaging films. FT-IR analysis confirmed the successful reaction between PVA and TCNCs.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:
Biomass-based composite packaging materials loaded with functional fillers have good application prospects in food preservation and freshness detection. Self-healing hydrogel packaging films based on nanocellulose (CNF), polyvinyl alcohol (PVA), and ZIF-8 embedded with curcumin (Cur@ZIF-8) were developed in this study. The synthesis of Cur@ZIF-8 was demonstrated by characterization experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!