Synbiotics may be useful to mitigate intestinal diseases such as ulcerative colitis. Here we show that combining 13'-carboxychromanol (δT3-13'), a metabolite of vitamin E δ-tocotrienol (δT3) via omega-oxidation, and Lactococcus lactis subsp. cremori (L. cremoris), but neither agent alone, significantly attenuated dextran sulfate sodium (DSS)-induced fecal bleeding and diarrhea, histologic colitis and interleukin 1β in mice. The combination of δT3-13'+L. cremoris also synergistically prevented DSS-caused compositional changes in gut microbiota and enriched beneficial bacteria including Lactococcus and Butyricicoccus. Interestingly, the anti-colitis effect correlated with the concentrations of δT3-13'-hydrogenated metabolite that contains 2 double bonds on the side chain (δT2-13'), instead of δT3-13' itself. Moreover, in contrast to δT3-13', combining δT3 and L. cremoris showed modest anti-colitis effects and did not prevent colitis-associated dysbiosis. In addition, ex vivo anaerobic incubation studies revealed that gut microbes selected by δT3-13' in the animal study could metabolize this compound to δT2-13' via hydrogenation, which appeared to be enhanced by L. cremoris. Overall, our study demonstrates that combining δT3-13' and L. cremoris can synergically prevent dysbiosis, and may be a novel synbiotic against colitis potentially via promoting δT3-13' metabolizers, which in turn contributes to superior beneficial effects of the combination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2024.11.024 | DOI Listing |
Biol Proced Online
December 2024
Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
Chang-Wei-Qing (CWQ) is a widely recognized Traditional Chinese Medicine (TCM) formulation composed of Astragalus, Codonopsis, Atractylodes, Poria, Coix seed, Akebia trifoliata Koidz, Sargentodoxa cuneata, and Vitis quinquangularis Rehd. This formulation has garnered significant interest for its positive effects in mitigating colorectal cancer, and when combined with PD-1, it affects some gut microbiota associated with tumor infiltrating lymphocytes cells. However, the biological rationale underlying the suppression of colitis-associated colorectal cancer (CAC) in AOM/DSS-treated mice by CWQ combined with PD-1 inhibitor remains to be explored.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand.
The present investigation explores into the influence of dietary nutrients, particularly alpha-linolenic acid (ALA), a plant-derived omega-3 fatty acid abundant in perilla seed oil (PSO), on the development of colitis-associated colorectal cancer (CRC). The study employs a mouse model to scrutinize the effects of ALA-rich PSO in the context of inflammation-driven CRC. Perilla seeds were subjected to oil extraction, and the nutritional composition of the obtained oil was analysed.
View Article and Find Full Text PDFBest Pract Res Clin Gastroenterol
September 2024
Hospices Civils de Lyon, Hepato-gastroenterology Department, Hôpital de La Croix-Rousse, 69000, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; Université Claude Bernard Lyon 1, Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France. Electronic address:
Colorectal cancer (CRC) is a worldwide public health issue specifically in patients with chronic diseases associated with a western lifestyle, such as metabolic diseases and inflammatory bowel diseases (IBD). Interestingly, both metabolic disorders and IBD are characterized by a chronic state of inflammation that contributes to the carcinogenesis with specific alteration of the gut microbiota composition and function. Evidence now shows that this altered gut microbiota contributes fueling a chronic pro-inflammatory state in a vicious circle that can favor CRC development.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA. Electronic address:
Synbiotics may be useful to mitigate intestinal diseases such as ulcerative colitis. Here we show that combining 13'-carboxychromanol (δT3-13'), a metabolite of vitamin E δ-tocotrienol (δT3) via omega-oxidation, and Lactococcus lactis subsp. cremori (L.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:
Colitis-associated colorectal cancer (CAC) is fatal and can develop spontaneously or as a complication of inflammatory bowel diseases. Although co-administration of azoxymethane/dextran sulfate sodium (AOM/DSS) is a classic method for CAC modeling, its limitations need to be addressed. Accordingly, we aimed to optimize the AOM/DSS model to study CAC extensively and further investigate its pathogenic mechanisms relative to microbiota and metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!