Carbon-water interaction studies between aquatic and terrestrial ecosystems are especially needed today in Arctic and Boreal regions, as they are facing drastic warming and precipitation shifts. Despite the importance of streams in the carbon cycle, northern stream-based studies are scarce, owing to a lack of measurements throughout the north, and possibly skewing global greenhouse gas estimates. We used a combination of multiscale measurements to quantify water sources (HO isotope proxies), carbon availability (dissolved in/organic carbon concentrations) and quality (water absorbance, SUVA -index), microbial community structure (16S rRNA sequencing), and carbon dioxide (CO) and methane (CH) fluxes and concentrations. Our study site comprises a groundwater-influenced and peatland-dominated second-order stream, along with its adjacent lake inlet located in Northern Finland. Sampling was conducted three times during the summer of 2019 at 21 locations along the stream-lake continuum. Temporal and spatial shifts in water sources altered carbon characteristics, with CH concentrations being the key environmental factor shaping the microbial communities, overriding the influence of dissolved organic carbon amount and quality. The prevalence of methanotrophic bacteria highlighted the importance of CH as a carbon source and the methanotrophic groups as drivers of the CH/CO source-sink attributes of subarctic stream systems. Our results highlight the value of integrated hydrological, biogeochemical, and microbiological measures to resolve the biocomplexity of carbon-water interactions in northern headwater catchments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177434DOI Listing

Publication Analysis

Top Keywords

carbon
8
carbon cycle
8
greenhouse gas
8
stream-lake continuum
8
water sources
8
thaw till
4
till fall
4
fall interacting
4
interacting hydrology
4
hydrology carbon
4

Similar Publications

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å).

View Article and Find Full Text PDF

MOF-derived Carbon-Based Materials for Energy-Related Applications.

Adv Mater

January 2025

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.

New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.

View Article and Find Full Text PDF

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!