Multicomponent quantum mixtures in one dimension can be characterized by their symmetry under particle exchange. For a strongly interacting Bose-Bose mixture, we show that the time evolution of the momentum distribution from an initially symmetry-mixed state is quasiconstant for a SU(2) symmetry conserving Hamiltonian, while it displays large oscillations in time for the symmetry-breaking case where inter- and intraspecies interactions are different. Using the property that the momentum distribution operator at strong interactions commutes with the class-sum operator, the latter acting as a symmetry witness, we show that the momentum distribution oscillations correspond to symmetry oscillations, with a mechanism analogous to neutrino flavor oscillations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.183402 | DOI Listing |
Light Sci Appl
January 2025
Institute of Photonics, Leibniz University Hannover, 30167, Hannover, Germany.
Large-scale quantum networks require dynamic and resource-efficient solutions to reduce system complexity with maintained security and performance to support growing number of users over large distances. Current encoding schemes including time-bin, polarization, and orbital angular momentum, suffer from the lack of reconfigurability and thus scalability issues. Here, we demonstrate the first-time implementation of frequency-bin-encoded entanglement-based quantum key distribution and a reconfigurable distribution of entanglement using frequency-bin encoding.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.
View Article and Find Full Text PDFSci Adv
January 2025
New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong 999077, China.
Real multi-bandgap systems have non-abelian topological charges, with Euler semimetals being a prominent example characterized by real triple degeneracies (RTDs) in momentum space. These RTDs serve as "Weyl points" for real topological phases. Despite theoretical interest, experimental observations of RTDs have been lacking, and studies mainly focus on individual RTDs.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Milano, Italy.
Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.
View Article and Find Full Text PDFFront Pediatr
December 2024
Department of Endocrinology, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
Context: Type 2 diabetes (DM2) is an emerging disease in the pediatric population. DM2 is associated with metabolic-associated fatty liver disease (MAFLD). High-density lipoproteins (HDLs) are lipoproteins that are believed to have atheroprotective properties that reduce the risk of cardiovascular disease (CVD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!