Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pollution is a major global concern affecting biodiversity, particularly of freshwater species. Populations have developed mechanisms to deal with pollution, such as the chemical defensome, which is a set of genes involved in maintaining internal stability. Pollution significantly affects the Maipo River basin in Chile. This area is home to the endemic silverside fish Basilichthys microlepidotus, whose populations are affected by pollution to different degrees. We assessed gene expression in the liver and gill of this species, focusing on whole-transcriptome and chemical-defensome levels, to identify both independent and shared mechanisms in response to pollution. The results showed that 14-18 genes were consistently expressed differently among populations in polluted areas. These genes were primarily involved in liver cell mitosis and in responses to organic chemicals and carcinogenic processes. Genes expressed differently in the gill were more abundant in immune system biological processes. All populations consistently downregulated chemical-defensome genes in the liver. In differentially expressed chemical-defensome genes, shared biological processes included virus response, cellular redox homeostasis and transport, organic cyclic compound response and DNA-templated transcription regulation. Studying chemical-defensome genes can help reveal common ways that pollution builds up over time, and examining the whole transcriptome can elucidate the context in which this response develops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2024.107159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!