The impact of different lactobacilli fermentations on secondary metabolites of red raspberry juice and their biotransformation pathways via metabolomics based on UHPLC-MS/MS.

Int J Food Microbiol

School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia. Electronic address:

Published: January 2025

Secondary metabolites are a group of invaluable phytochemicals in raspberries. Fermentation process leads to changes in the phytochemical composition of fruits. This study aimed to investigate the influence of Lacticaseibacillus paracasei subsp. paracasei FBKL1.0328 and Lactiplantibacillus plantarum subsp. plantarum FBKL1.0310 on the secondary metabolites of red raspberry juice (CR) and uncover their conversion pathways via metabolomics based on ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A total of 695 secondary metabolites in the unfermented and fermented samples were identified. There were 90, 83 and 52 differential secondary metabolites identified in LCR (L. paracasei FBKL1.0328 fermented raspberry juice) vs. CR, LPR (L. plantarum FBKL1.0310 fermented raspberry juice) vs. CR, and LCR vs. LPR, respectively. Certain phenolic acids (e.g. 3-phenyllacitc acid), flavonoids (e.g. galangin-7-glucoside), alkaloids (e.g. indole-3-lactic acid), and terpenoids (e.g. glucosyl 7-methyl-3-methyleneoctane-1,2,6,7-tetraol) were selected as the crucial differential metabolites. These two lactobacilli utilized distinct metabolic pathways for processing secondary metabolites. L. paracasei FBKL1.0328 primarily transformed flavonoids through the "Flavone and flavonol biosynthesis" pathway. L. plantarum FBKL1.0310 mainly converted phenolic acids via the "Tyrosine metabolism" pathway and the "Aminobenzoate degradation" pathway. Interestingly, L. plantarum FBKL1.0310 outperformed L. paracasei FBKL1.0328 in upregulating certain valuable bioactive compounds such as indole-3-lactic acid and 3-phenyllacitc acid, underscoring its potential as a promising strain for developing health-beneficial fermented fruit juices. These findings provide insights to how different lactobacilli modify secondary metabolite composition in red raspberry juice and offer valuable information for the industrial application of lactobacilli in fruit processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2024.110974DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
24
raspberry juice
20
paracasei fbkl10328
16
plantarum fbkl10310
16
red raspberry
12
metabolites red
8
pathways metabolomics
8
metabolomics based
8
fermented raspberry
8
phenolic acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!