Pulmonary fibrosis (PF) is an interstitial lung disease tightly associated with the disruption of mitochondrial pool homeostasis, a delicate balance influenced by functional and dysfunctional mitochondria within lung cells. Mitochondrial transfer is an emerging technology to increase functional mitochondria via exogenous mitochondrial delivery; however, the therapeutic effect on mitochondrial transfer is hampered during the PF process by the persistence of dysfunctional mitochondria, which is attributed to impaired mitophagy. Herein, we reported engineering chondria mediated by itophagy-nhanced anoparticle (Mito-MEN), which promoted synchronal regulation of functional and dysfunctional mitochondria for treating PF. Mitophagy-enhanced nanoparticles (MENs) were fabricated through the encapsulation of Parkin , and the electrostatic interaction favored MENs to anchor isolated healthy mitochondria for the construction of Mito-MEN. Mito-MEN increased the load of functional exogenous mitochondria by enhancing mitochondrial delivery efficiency and promoted mitophagy of dysfunctional endogenous mitochondria. In a bleomycin (BLM)-induced PF mouse model, Mito-MEN repaired mitochondrial function and efficiently relieved PF-related phenotypes. This study provides a powerful tool for synchronal adjustment of mitochondrial pool homeostasis and offers a translational approach for pan-mitochondrial disease therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c10328DOI Listing

Publication Analysis

Top Keywords

mitochondrial pool
12
dysfunctional mitochondria
12
mitochondria
8
mitochondrial
8
pulmonary fibrosis
8
pool homeostasis
8
functional dysfunctional
8
mitochondrial transfer
8
mitochondrial delivery
8
mitophagy-enhanced nanoparticle-engineered
4

Similar Publications

From molecular to physical function: The aging trajectory.

Curr Res Physiol

December 2024

Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.

Aging is accompanied by a decline in muscle mass, strength, and physical function, a condition known as sarcopenia. Muscle disuse attributed to decreased physical activity, hospitalization, or illness (e.g.

View Article and Find Full Text PDF

DNA replication stress underpins the vulnerability to oxidative phosphorylation inhibition in colorectal cancer.

Cell Death Dis

January 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.

Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition.

View Article and Find Full Text PDF

Introduction: Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-like quinone. The plasma levels of CoQ10 are reduced in patients with chronic kidney disease (CKD). CoQ10 supplementation can improve mitochondrial function and decrease oxidative stress in these patients.

View Article and Find Full Text PDF

Nrf2 mediates mitochondrial and NADPH oxidase-derived ROS during mild heat stress at 40 °C.

Biochim Biophys Acta Mol Cell Res

January 2025

Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada. Electronic address:

Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses.

View Article and Find Full Text PDF

Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

December 2024

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!