We present a novel, to the best of our knowledge, approach to overcome the limitations imposed by scattering media using time-gated light field tomography. By integrating the time-gating technique with light field imaging, we demonstrate the ability to capture and reconstruct images with different depths through highly scattering environments. Our method exploits the temporal characteristics of light propagation to selectively isolate ballistic photons, enabling enhanced depth resolution and improved imaging quality. Through comprehensive experimental validation and analysis, we showcase the effectiveness of our technique in resolving depth information with high fidelity, even in the presence of significant scattering. The resultant system can simultaneously acquire multi-angled projections of the object without requiring prior knowledge of the media or the target. This advancement holds promise for a wide range of applications, including non-invasive medical imaging, environmental monitoring, and industrial inspection, where imaging through scattering media is critical for an accurate and reliable analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.541549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!