Controlling four-wave mixing (FWM) is vital for several applications, including fiber optical communication, optical signal processing, optical amplification, and frequency generation. This paper presents a novel, to our knowledge, approach to control unidirectional FWM in elliptically birefringent fibers. By leveraging the frequency-dependent polarization eigenmodes of these fibers and detuning the optical frequency of one of the pump fields by a few megahertz, we can turn the FWM interaction on and off, thus controlling the generation of signal and idler fields. Moreover, this approach allows us to turn off the FWM interaction at any desired frequency, enabling all-optical switching and narrowband filtering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.542187DOI Listing

Publication Analysis

Top Keywords

four-wave mixing
8
elliptically birefringent
8
birefringent fibers
8
turn fwm
8
fwm interaction
8
turning four-wave
4
mixing elliptically
4
fibers narrow
4
frequency
4
narrow frequency
4

Similar Publications

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.

View Article and Find Full Text PDF

In this study, we investigated in detail the regulation mechanism of electron transfer under laser-induced breakdown (LIB) on weak O-D stimulated Raman scattering (SRS) in DMSO-DO solutions. Significantly, the Raman activity of O-D vibrations was greatly enhanced by two orders of magnitude due to electron transfer in DMSO molecules. Density functional theory (DFT) calculations showed that the O-D Raman activity was significantly enhanced in the DMSO-DO dimer compared to the DO dimer.

View Article and Find Full Text PDF

Large-scale quantum photonic circuits require integrating multiple single-photon sources, which are typically based on spontaneous four-wave mixing (SFWM) in spiral waveguides or microring resonators (MRRs). Photons can be generated in both clockwise (CW) and counterclockwise (CCW) orientations from a single source in a Sagnac configuration, showing promise for improving scalability. In this work, we propose a fully integrable scheme for bidirectional creation and usage of single photons.

View Article and Find Full Text PDF

Nanoscale thickness Octave-spanning coherent supercontinuum light generation.

Light Sci Appl

January 2025

Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.

Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!