AI Article Synopsis

  • Plasticity in cancer enables tumor cells to switch states, contributing to tumor diversity and challenges in treatment.
  • XIST long noncoding RNA is found to be down-regulated in ovarian cancer, correlating with increased cancer stemness and poorer patient outcomes.
  • Reducing XIST levels in ovarian cancer cells enhances stemness and alters cell characteristics under specific conditions, highlighting XIST as a potential target for therapies in CSC-rich tumors.

Article Abstract

Plasticity, a key hallmark of cancer, enables cells to transition into different states, driving tumor heterogeneity. This cellular plasticity is associated with cancer progression, treatment resistance, and relapse. Cancer stem cells (CSCs) play a central role in this process, yet the molecular factors underlying cancer cell stemness remain poorly understood. In this study, we explored the role of XIST (X-inactive specific transcript) long noncoding RNA in ovarian cancer stemness and plasticity through in silico and in vitro analyses. We found that XIST is significantly down-regulated in ovarian tumors, with low XIST expression linked to a higher stemness index and lower overall survival. Knocking down XIST in ovarian cancer cells enhanced stemness, particularly increasing mesenchymal-like CSCs, and under hypoxic conditions, it promoted epithelial-like CSC markers. Our findings suggest that XIST loss leads to CSC enrichment and cellular plasticity in ovarian cancer, pointing to potential therapeutic targets for patients with low XIST expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588085PMC
http://dx.doi.org/10.1073/pnas.2418096121DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
cellular plasticity
12
plasticity ovarian
8
cancer
8
low xist
8
xist expression
8
xist
6
stemness
5
plasticity
5
ovarian
5

Similar Publications

The objective of this study was to examine the efficacy of the concurrent utilization of estradiol valerate and kuntai capsule (a Chinese herbal preparation) in addressing premature ovarian failure (POF) and its ramifications for ovarian hemodynamics and sex hormone levels. A retrospective study of 104 patients with POF was conducted, dividing them into control (n=50) and observation groups (n=54). The control group received estradiol valerate, while the observation group received estradiol valerate and KunTai capsules over 12 weeks.

View Article and Find Full Text PDF

Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.

View Article and Find Full Text PDF

Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.

View Article and Find Full Text PDF

Background: The quality of life (QOL) of ovarian cancer patients is often impaired by refractory ascites. Cell-free and concentrated ascites reinfusion therapy (CART) is a palliative treatment for refractory ascites, but adverse events, such as fever, are problematic. Several cytokines have been suggested to be responsible for the adverse events, but they have not been investigated in detail.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!