Ionic Liquid Additive Mitigating Lithium Loss and Aluminum Corrosion for High-Voltage Anode-Free Lithium Metal Batteries.

ACS Nano

College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China.

Published: November 2024

Concentrated electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) have been proposed as an effective Li-compatible electrolyte for anode-free lithium metal batteries (AFLMBs). However, these electrolytes suffer from severe aluminum corrosion at an elevated potential. To address this issue, we propose a binary ionic liquid (IL) electrolyte additive comprising the 1-methyl-1-butyl pyrrolidinium cation (Pyr), difluoro(oxalate)borate anion (DFOB), and difluorophosphate (POF) anion to mitigate the Li inventory loss and Al corrosion in 4 M LiFSI/DME electrolyte simultaneously. On the anode side, the IL additive facilitates the formation of a robust LiN- and LiF-rich solid electrolyte interphase, promoting highly reversible Li plating/stripping and uniform Li deposition. Additionally, the ILs alter the Li solvation structure, leading to enhanced and rapid Li desolvation kinetics. Concurrently, on the cathode side, the ILs aid in the generation of dense LiF- and AlF-rich passivation films against Al corrosion. By using the IL-added electrolyte, the Cu||LiMnFePO cell operates stably at 4.5 V, and the Cu||NCM613 cell with a high loading of 4.0 mA h cm sustains 142 cycles until 80% capacity retention. This research contributes to a deeper understanding of the IL additive mechanism at the electrode-electrolyte interfaces and offers a straightforward approach to designing practical high-voltage AFLMB electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c13203DOI Listing

Publication Analysis

Top Keywords

ionic liquid
8
aluminum corrosion
8
anode-free lithium
8
lithium metal
8
metal batteries
8
electrolyte
5
additive
4
liquid additive
4
additive mitigating
4
lithium
4

Similar Publications

Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.

View Article and Find Full Text PDF

Chameleon-inspired molecular imprinted polymer with bicolored states for visual and stable detection of diethylstilbestrol in water and food samples.

Food Chem

December 2024

Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China. Electronic address:

A novel biomimetic molecular imprinted polymer chip with fluorescence (FL) and structural (STR) states, inspired by color patterns of chameleon skin, is fabricated for detecting diethylstilbestrol (DES). The chip features a regularly structured, non-closed-packed (NCP) colloidal photonic crystal (CPC) lattice made monodisperse MIP spheres containing fluorescence poly ionic liquid (FPIL) pigments. The FL color originates from FPIL pigments and is further enhanced by the Purcell effect, while the STR color results from the periodic arrangement of the NCP CPC structure.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).

View Article and Find Full Text PDF

Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy storage field, likely owing to their safety, lack of leakage, and compatibility with various separators as well as their higher ionic conductivity (IC) than traditional solid electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!