A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous and Rapid Detection of Glucose and Insulin: Coupling Enzymatic and Aptamer-Based Assays. | LitMetric

Diabetes management demands precise monitoring of key biomarkers, particularly insulin (I) and glucose (G). Herein, we present a bioelectronic chip device that enables the simultaneous detection of I and G in biofluids within 2 min. This dual biosensor chip integrates aptamer-based insulin sensing with enzymatic glucose detection on a single platform, employing a four-electrode sensor chip. The insulin voltammetric sensor employs a G-quadraplex methylene-blue-modified aptamer, while the amperometric biocatalytic glucose sensor utilizes a second-generation mediator-based approach. Simultaneous reagent-less sensing of I and G has been achieved by addressing key challenges. These include combining different surface chemistries, assay formats, and detection principles at closely spaced working electrodes and the substantially different concentration levels of the I and G targets. An attractive analytical performance, with no apparent crosstalk, is demonstrated for the simultaneous detection of millimolar G concentrations and picomolar I concentrations in single microliter serum or saliva sample droplets. This dual biosensor offers rapid, cost-effective, and reliable monitoring, addressing the unmet need for integrated multiplexed diabetes biomarker detection in decentralized settings. Such integration of enzymatic and aptamer-based bioassays could greatly expand the scope of decentralized testing in healthcare beyond diabetes care.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c04289DOI Listing

Publication Analysis

Top Keywords

enzymatic aptamer-based
8
simultaneous detection
8
dual biosensor
8
detection
6
simultaneous
4
simultaneous rapid
4
rapid detection
4
glucose
4
detection glucose
4
insulin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!