Isolation and Analysis of Mitochondrial Small RNAs from Rat Liver Tissue and HepG2 Cells.

Methods Mol Biol

Department of Science and Environment, Roskilde University, Roskilde, Denmark.

Published: November 2024

The presence of non-coding RNAs, such as microRNAs (miRNAs), in mitochondria has been reported by several studies. The biological roles and functions of these mitochondrial miRNAs ("mitomiRs") have not been sufficiently characterized, but the mitochondrial localization of miRNAs has recently gained significance due to modified mitomiR-populations in certain states of diseases. Here, we describe the isolation and analysis of mitochondrial RNAs from rat liver tissue and HepG2 cells. The principle of the analysis is to prepare mitochondria by differential centrifugation. Cytosolic RNA contamination is eliminated by RNase A treatment followed by percoll gradient-purification and RNA-extraction. Small RNA content is verified by capillary electrophoresis. Mitochondrial miRNAs are detected by Q-PCR following synthesis of cDNA. After Q-PCR based mitomiR-profiling, the Normfinder algorithm is applied to identify suitable reference miRNAs to use as normalizers for mitochondrial input and data analysis. The described procedure depicts a simple way of isolating and quantifying mitomiRs in tissue and cell culture samples.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4264-1_14DOI Listing

Publication Analysis

Top Keywords

isolation analysis
8
analysis mitochondrial
8
rnas rat
8
rat liver
8
liver tissue
8
tissue hepg2
8
hepg2 cells
8
mitochondrial mirnas
8
mitochondrial
6
mirnas
5

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Collapsing glomerulopathy (CG) has a severe course typically associated with viral infections, especially HIV and parvovirus B19, systemic lupus erythematosus (SLE), among other etiologies. A 35-year-old woman with recent use of a JAK inhibitor due to rheumatoid arthritis presented with a 2-week history of fever, cervical adenopathy, and facial erythema. After admission, anemia, hypoalbuminemia, proteinuria, and severe acute kidney injury were noted.

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!