16S rRNA gene sequencing is commonly used for identification and quantitation of microorganisms in complex biological mixtures, such as the human gut microbiome. The 16S rRNA gene is an excellent target gene for sequencing DNA in a heterogenous sample, as it is a highly conserved part of the transcriptional machinery. Universal PCR primers are used to amplify the conserved regions of 16S. Thus, it is possible to amplify the gene in a wide range of different microorganisms from a single sample. As the 16S rRNA gene consists of both conserved and variable regions, sequencing of the variable regions can be used to differentiate between different bacterial species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4192-7_4DOI Listing

Publication Analysis

Top Keywords

16s rrna
12
rrna gene
12
gut microbiome
8
microbiome 16s
8
gene sequencing
8
variable regions
8
gene
5
collection processing
4
processing samples
4
samples next-generation
4

Similar Publications

Phylogenetic position of the subfamily Symphrasinae (Insecta: Neuroptera), its intergeneric relationships and evolution of the raptorial condition within Mantispoidea.

Invertebr Syst

January 2025

Instituto de Biología, UNAM, Departamento de Zoología, Colección Nacional de Insectos, Apartado Postal 70-153, 04510, Ciudad de México, Mexico.

The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae.

View Article and Find Full Text PDF

Aerobic exercise (AE) has been shown to offer significant benefits for Alzheimer's disease (AD), potentially influencing the gut microbiota. However, the impact of changes in intestinal flora in early Alzheimer's disease induced by aerobic exercise on metabolic pathways and metabolites is not well understood. In this study, 3-month-old APP/PS1 and C57BL/6 mice were divided into two groups each: a control group (ADC for APP/PS1 and WTC for C57BL/6) and an aerobic exercise group (ADE for APP/PS1 and WTE for C57BL/6).

View Article and Find Full Text PDF

Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.

View Article and Find Full Text PDF

The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials.

View Article and Find Full Text PDF

Gut microbial composition associated with risk of premature aging in women with Yin-deficiency constitution.

Front Cell Infect Microbiol

January 2025

National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.

Background: Yin-deficiency constitution (YinDC) refers to a traditional Chinese medicine concept, characterized by an imbalance state that includes an imbalance in the gut microbiota, resulting from a relative deficiency of Yin fluids within the body. In recent years, it has become apparent that the composition and structure of the gut microbiota play a significant role in the aging process. The imbalance of gut microbiota in YinDC may accelerate the aging process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!