Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Macrophages are fundamental cellular components of atherosclerotic plaques, and inhibition of macrophage inflammation can delay the development of atherosclerotic plaques. Sodium danshensu (SDSS) can inhibit inflammatory responses and thus delay atherosclerosis, but the specific mechanism remains unclear. The effect of SDSS in inhibiting atherosclerosis was confirmed by observing and detecting atherosclerotic plaque area, morphology and lipid levels in the aorta. The mechanism by which SDSS attenuated atherosclerotic plaques was elucidated by in vivo and in vitro detection of inflammation-related mRNA and protein expression. In addition, bioinformatics analysis, RT-qPCR and dual-luciferase assays were used to predict and validate the potential miRNAs of SDSS to attenuate atherosclerosis. miR-200a-2p mimic and inhibitor were then compared for their effects on the efficacy of SDSS. SDSS inhibited atherosclerotic plaque formation and suppressed the expression of MEKK3, TNF-α, and IL-1β as well as nuclear factor-κB (NF-κB) phosphorylation and nuclear translocation to attenuate inflammatory responses. Bioinformatic predictions combined with RT-qPCR results and dual-luciferase assays indicated that miR-200a-3p negatively regulated MEKK3 expression by directly targeting the 3'UTR region of MEKK3, thereby blocking MEKK3. Further studies showed that miR-200a-3p inhibitor, but not miR-200a-3p mimic, reversed the beneficial effects of SDSS on inflammation. SDSS inhibited macrophage inflammation by modulating the miR-200a-3p/MEKK3/NF-κB signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-024-04626-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!