A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forces experienced at different levels of the musculoskeletal system during horizontal decelerations. | LitMetric

Horizontal decelerations are frequently performed during team sports and are closely linked to sports performance and injury. This study aims to provide a comprehensive description of the kinetic demands of decelerations at the whole-body, structural, and tissue-specific levels of the musculoskeletal system. Team-sports athletes performed maximal-effort horizontal decelerations whilst full-body kinematics and ground reaction forces (GRFs) were recorded. A musculoskeletal model was used to determine whole-body (GRFs), structural (ankle, knee, and hip joint moments and contact forces), and tissue (twelve lower-limb muscle forces) loads. External GRFs in this study, especially in the horizontal direction, were up to six times those experienced during accelerated or constant-speed running reported in the literature. To cope with these high external forces, large joint moments (hip immediately after touchdown; ankle and knee during mid and late stance) and contact forces (ankle, knee, hip immediately after touchdown) were observed. Furthermore, eccentric force requirements of the tibialis anterior, soleus, quadriceps, and gluteal muscles were particularly high. The presented loading patterns provide the first empirical explanations for why decelerating movements are amongst the most challenging in team sports and can help inform deceleration-specific training prescription to target horizontal deceleration performance, or fatigue and injury resistance in team-sports athletes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2024.2428086DOI Listing

Publication Analysis

Top Keywords

horizontal decelerations
12
ankle knee
12
levels musculoskeletal
8
musculoskeletal system
8
team sports
8
team-sports athletes
8
knee hip
8
joint moments
8
contact forces
8
hip touchdown
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!