Objectives: This study aims to improve the ethical use of machine learning (ML)-based clinical prediction models (CPMs) in shared decision-making for patients with kidney failure on dialysis. We explore factors that inform acceptability, interpretability, and implementation of ML-based CPMs among multiple constituent groups.

Materials And Methods: We collected and analyzed qualitative data from focus groups with varied end users, including: dialysis support providers (clinical providers and additional dialysis support providers such as dialysis clinic staff and social workers); patients; patients' caregivers (n = 52).

Results: Participants were broadly accepting of ML-based CPMs, but with concerns on data sources, factors included in the model, and accuracy. Use was desired in conjunction with providers' views and explanations. Differences among respondent types were minimal overall but most prevalent in discussions of CPM presentation and model use.

Discussion And Conclusion: Evidence of acceptability of ML-based CPM usage provides support for ethical use, but numerous specific considerations in acceptability, model construction, and model use for shared clinical decision-making must be considered. There are specific steps that could be taken by data scientists and health systems to engender use that is accepted by end users and facilitates trust, but there are also ongoing barriers or challenges in addressing desires for use. This study contributes to emerging literature on interpretability, mechanisms for sharing complexities, including uncertainty regarding the model results, and implications for decision-making. It examines numerous stakeholder groups including providers, patients, and caregivers to provide specific considerations that can influence health system use and provide a basis for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jamia/ocae255DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648714PMC

Publication Analysis

Top Keywords

prediction models
8
ml-based cpms
8
dialysis support
8
support providers
8
specific considerations
8
model
5
machine learning-based
4
learning-based prediction
4
models medical
4
decision-making
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!