Cerebral ischemic injury occurs when blood flow drops below a critical level, resulting in an energy failure. The progressive transformation of hypoperfused viable tissue, the ischemic penumbra, into infarction is a mechanism shared by patients with ischemic stroke if timely reperfusion is not achieved. Yet, the pace at which this transformation occurs, known as the infarct growth rate (IGR), exhibits remarkable heterogeneity among patients, brain regions, and over time, reflecting differences in compensatory collateral flow and ischemic tolerance. We review (1) the pathophysiology of infarct growth, (2) the advantages and pitfalls of different approaches of IGR measurement, (3) research gaps for future studies, and (4) the clinical implications of stroke progressor phenotypes. The estimated average IGR in patients with acute large vessel occlusion stroke is 5.4 mL/h although there is wide variability based on ischemic stroke subtype, occlusion location, presence of collaterals, and patient baseline status. The IGR can be calculated using various pragmatic strategies, mostly either quantifying the extension of the infarct at a particular time and dividing this measure by the time that elapsed from symptom onset to imaging assessment or by using collateral blood flow status as a radiological surrogate marker. The IGR defines a spectrum of clinical stroke phenotypes, often dichotomized into fast and slow progressors. An IGR ≥10 mL/h and the perfusion metric hypoperfusion intensity ratio ≥0.5 are commonly used definitions of fast progressors. A nuanced understanding of the IGR and stroke progressor phenotypes could have clinical implications, including informing prognostication, acute decision-making in peripheral-to-comprehensive transfer patients eligible for thrombectomy, and selection for adjuvant neuroprotective agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/STROKEAHA.124.049013 | DOI Listing |
Orbit
January 2025
Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA.
Pleomorphic adenoma of the lacrimal gland (PALG) is a benign neoplasm typically presenting with gradual, painless globe displacement and/or lid swelling. We report an atypical case of PALG in a 53-year old male presenting acutely, mimicking orbital cellulitis. Imaging demonstrated an extraconal rim-enhancing soft-tissue lesion medial to the left lacrimal gland, involving superior rectus and levator palpebrae superioris.
View Article and Find Full Text PDFCells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Amniotic fluid is a complex and dynamic biological matrix that surrounds the fetus during the pregnancy. From this fluid, is possible to isolate various cell types with particular interest directed towards stem cells (AF-SCs). These cells are highly appealing due to their numerous potential applications in the field of regenerative medicine for tissues and organs as well as for treating conditions such as traumatic or ischemic injuries to the nervous system, myocardial infarction, or cancer.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
Background: Cardiovascular disease (CVD) is among the strongest modifiable risk factors for dementia. However, vascular health is multifaceted, and its neurobiological underpinnings are unclear. A recent study (Williams et al.
View Article and Find Full Text PDFAim: To identify predictors and construct a model for predicting left ventricular (LV) ejection fraction (EF) in patients with ST-segment elevation myocardial infarction (STEMI).
Material And Methods: This was a prospective registry study of patients with STEMI admitted within the first 24 hours of the disease onset. Patients were evaluated and treated according to the current clinical guidelines.
Arterioscler Thromb Vasc Biol
January 2025
Cardiovascular Research Center, New York University Langone Health, New York University Grossman School of Medicine. (A.A.C.N., J.M.D., K.J.M.).
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!