Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
γ-Valerolactone (GVL) is a versatile chemical derived from biomass, known for its uses such as a sustainable and environmentally friendly solvent, a fuel additive, and a building block for renewable polymers and fuels. Researchers are keenly interested in the catalytic transfer hydrogenation of levulinic acid and its esters as a method to produce GVL. This approach eliminates the need for H pressure and costly metal catalysts, improving the safety, cost effectiveness and environmental sustainability of the process. Our Perspective highlights recent advancements in this field, particularly with respect to catalyst development, categorizing them according to catalyst types, including zirconia-based, zeolites, precious metals, and nonprecious metal catalysts. We discuss factors such as reaction conditions, catalyst characteristics, and hydrogen donors and outline challenges and future research directions in this popular area of research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558667 | PMC |
http://dx.doi.org/10.1021/acssuschemeng.4c05812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!