Background: We aimed to investigate the effect of 4-methyl-N-(piperidin-1-ylmethylene) benzenesulfonamide (PMSA) on tumor cell proliferation, migration, ferroptosis, and the potential molecular mechanism of ferroptosis in tumor cells.
Methods: PMSA was produced in the marine biomedical research institute of Guangdong Medical University (Zhanjiang, China) and used for tumor cells treatment. MTT and cell colony formation assays were used to measure the inhibition of tumor cell proliferation, the scratch assay was used to identified the suppression of tumor cell migration, the death of tumor cells was measured by Annexin-V-FITC/PI staining, the level of ferroptosis-relative lipid ROS in tumor cells was measured by flow cytometry and MDA detection kit, and the expression of ferroptosis-relative protein was measured by Western blot. The Discovery Studio system was used for molecular docking and the binding ability was measured by cellular thermal shift assay.
Results: The PMSA we produced inhibited tumor cell proliferation, colony formation, migration and triggered cell death, and Fer-1 could reverse these effects. The amount of ROS and MDA levels in tumor cells was also markedly raised by PMSA. PMSA treatment significantly reduced the expression of SLC7A11/XCT, , and in tumor cells. The phosphorylation level of was also decreased. Through molecular docking, it was discovered that PMSA could bind to and thereby block its activity.
Conclusion: The -- axis was the target of PMSA's anti-tumor action, which results in ferroptosis of tumor cells. This demonstrated that the compound has the potential to be used as a candidate for anti-tumor drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557751 | PMC |
http://dx.doi.org/10.18502/ijph.v53i10.16705 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFHistol Histopathol
January 2025
Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, PR China.
Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.
View Article and Find Full Text PDFTIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.
View Article and Find Full Text PDFTher Adv Med Oncol
January 2025
Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Medicine, Shanghai University, Shanghai, China.
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!