Miniature inverted-repeat transposable elements (MITEs) constitute a class of class II transposable elements (TEs) that are abundant in plant genomes, playing a crucial role in their evolution and diversity. Barley (), the fourth-most important cereal crop globally, is widely used for brewing, animal feed, and human consumption. However, despite their significance, the mechanisms underlying the insertion or amplification of MITEs and their contributions to barley genome evolution and diversity remain poorly understood. Through our comprehensive analysis, we identified 32,258 full-length MITEs belonging to 2,992 distinct families, accounting for approximately 0.17% of the barley genome. These MITE families can be grouped into four well-known superfamilies (, , , and ) and one unidentified superfamily. Notably, we observed two major expansion events in the barley MITE population, occurring approximately 12-13 million years ago (Mya) and 2-3 Mya. Our investigation revealed a strong preference of MITEs for gene-related regions, particularly in promoters, suggesting their potential involvement in regulating host gene expression. Additionally, we discovered that 7.73% miRNAs are derived from MITEs, thereby influencing the origin of certain miRNAs and potentially exerting a significant impact on post-transcriptional gene expression control. Evolutionary analysis demonstrated that MITEs exhibit lower conservation compared to genes, consistent with their dynamic mobility. We also identified a series of MITE insertions or deletions associated with domestication, highlighting these regions as promising targets for crop improvement strategies. These findings significantly advance our understanding of the fundamental characteristics and evolutionary patterns of MITEs in the barley genome. Moreover, they contribute to our knowledge of gene regulatory networks and provide valuable insights for crop improvement endeavors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560428PMC
http://dx.doi.org/10.3389/fpls.2024.1474846DOI Listing

Publication Analysis

Top Keywords

transposable elements
12
barley genome
12
miniature inverted-repeat
8
inverted-repeat transposable
8
evolution diversity
8
gene expression
8
crop improvement
8
mites
7
barley
6
genome-wide characterization
4

Similar Publications

Kuafuorterviruses, a novel major lineage of reverse-transcribing viruses.

Virus Evol

December 2024

College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.

Reverse-transcribing viruses (RTVs) characterized by reverse transcription required for their replication infect nearly all the eukaryotes. After decades of extensive analyses and discoveries, the understanding of the diversity of RTVs has largely stagnated. Herein, we discover a previously neglected lineage of RTVs, designated Kuafuorterviruses, in animals.

View Article and Find Full Text PDF

Background/aim: Lung cancer, a predominant contributor to cancer mortality, is characterized by diverse etiological factors, including tobacco smoking and genetic susceptibilities. Despite advancements, particularly in nonsmall-cell lung cancer (NSCLC), therapeutic options for lung squamous cell carcinoma (LUSC) are limited. Transposable elements (TEs) and their regulatory proteins, such as tigger transposable element derived (TIGD) family proteins, have been implicated in cancer development.

View Article and Find Full Text PDF

DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties.

View Article and Find Full Text PDF

Characterization and comparative analysis of antimicrobial resistance in from hospital and municipal wastewater treatment plants.

J Water Health

December 2024

Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India E-mail:

The spread of antimicrobial resistance (AMR) poses global health threats, with wastewater treatment plants (WWTPs) as hotspots for its development. Horizontal gene transfer facilitates acquisition of resistance genes, particularly through integrons in . Our study investigates isolates from hospital and municipal WWTPs, focusing on integrons, their temporal correlation and phenotypic and molecular characterization of AMR.

View Article and Find Full Text PDF

Cytidine analogs in plant epigenetic research and beyond.

J Exp Bot

December 2024

Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.

Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!