We provide an overview of the isotopic signatures of presolar supernova grains, specifically focusing on Ti-containing grains with robustly inferred supernova origins and their implications for nucleosynthesis and mixing mechanisms in supernovae. Recent technique advancements have enabled the differentiation between radiogenic (from Ti decay) and nonradiogenic Ca excesses in presolar grains, made possible by enhanced spatial resolution of Ca-Ti isotope analyses with the Cameca NanoSIMS (Nano-scale Secondary Ion Mass Spectrometer) instrument. Within the context of presolar supernova grain data, we discuss () the production of Ti in supernovae and the impact of interstellar medium heterogeneities on the galactic chemical evolution of Ca/Ca, () the nucleosynthesis processes of neutron bursts and explosive H-burning in Type II supernovae, and () challenges in identifying the progenitor supernovae for Cr-rich presolar nanospinel grains. Drawing on constraints and insights derived from presolar supernova grain data, we also provide an overview of our current understanding of the roles played by various supernova types - including Type II, Type Ia, and electron capture supernovae - in accounting for the diverse array of nucleosynthetic isotopic variations identified in bulk meteorites and meteoritic components. We briefly overview the potential mechanisms that have been proposed to explain these nucleosynthetic variations by describing the transport and distribution of presolar dust carriers in the protoplanetary disk. We highlight existing controversies in the interpretation of presolar grain data and meteoritic nucleosynthetic isotopic variations, while also outlining potential directions for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557683 | PMC |
http://dx.doi.org/10.1007/s11214-024-01122-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!