A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of Calcium Phosphate by Microwave Hydrothermal Method: Physicochemical and Morphological Characterization. | LitMetric

Bone loss in the alveolar ridge is a factor widely studied by dentists in implant surgeries, as it poses a major challenge for aesthetic and functional recovery in patients with large maxillary bone defects. Synthetic biomaterials function as grafts designed to replace and remodel bone tissue. Calcium phosphate is a biomaterial that has good properties such as biocompatibility and bioactivity, making it a reference in bone replacement treatments. A synthetic biomaterial such as calcium phosphate can be obtained by various synthesis techniques. The microwave hydrothermal method (HTMO) is a pathway that allows changes in synthesis parameters and significantly increases the transmission efficiency of materials such as synthetic calcium phosphate derivatives. The study proposes obtaining a biomaterial for bone grafting based on calcium phosphate by the microwave HTMO and evaluating its microstructural and physicochemical characteristics. The parameters tested in this process were temperature and reaction time. The calcium phosphate particulates were obtained by the microwave HTMO at temperatures of 110°C and 130°C for 60 min and calcined at 300°C, 500°C, and 700°C. Microstructural and physicochemical characterization analyses were carried out using scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. The results obtained showed the presence of more than one calcium phosphate biological interest phase, as hydroxyapatite (HA), tricalcium phosphate (-TCP), and octacalcium phosphate (OCP), highlighting with increasing calcination temperature, the -TCP phase becomes evident. The proposed synthesis method was efficient in obtaining a biomaterial with suitable physical and chemical characteristics, with an association of crystalline phases of biological interest related to the increase in synthesis temperature and calcination temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561177PMC
http://dx.doi.org/10.1155/2024/2167066DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
28
phosphate
9
phosphate microwave
8
microwave hydrothermal
8
hydrothermal method
8
obtaining biomaterial
8
microwave htmo
8
microstructural physicochemical
8
biological interest
8
calcination temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!