The co-loading of radionuclides and small-molecule chemotherapeutic drugs as nanotheranostic platforms using nanozymes holds tremendous potential for imaging-guided synergistic therapy. This study presents such nanotheranostic platform (Lu-MFeCu@Tan) via co-assembling Lu radionuclide and tanshinone (Tan) into Fe/Cu dual-metal nanozyme (MFeCu). This platform simultaneously enables single-photon emission computed tomography (SPECT) imaging and a quadruple-synergistic tumor therapy approach, including internal radioisotope therapy (RIT), catalysis therapy, chemotherapy, and MFeCu-mediated ferroptosis and cuproptosis therapy. In this platform, the MFeCu can catalyze excessive intracellular hydrogen peroxide (HO) to generate radical oxygen species (ROS) and deplete glutathione (GSH). The excess of HO and GSH are main factors for radioresistance and chemoresistance, reducing them can enhance chemotherapy and RIT. The generated ROS and depleted GSH further induce mitochondrial dysfunction and promote the aggregation of lipoylated dihydrolipoamide S-acetyltransferase and lipid peroxidation, causing the enhance of ferroptosis and cuproptosis. The in vitro and in vivo results demonstrate that this quadruple-synergistic approach shows significant therapeutic efficacy to complete tumor eradication and reduced recurrence in vivo. In conclusion, this work presents a promising strategy for designing SPECT imaging-guided quadruple-synergistic therapy and highlights the feasibility of developing a self-assembled radionuclide and small molecule chemotherapy drugs nanotherapeutic platform for combined treatment of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202402696DOI Listing

Publication Analysis

Top Keywords

ferroptosis cuproptosis
8
therapy
7
fe/cu bimetallic
4
bimetallic nanozyme
4
nanozyme co-assembled
4
co-assembled tanshinone
4
quadruple-synergistic
4
tanshinone quadruple-synergistic
4
quadruple-synergistic tumor-specific
4
tumor-specific therapy
4

Similar Publications

Targeting regulated cell death (RCD) with naturally derived sesquiterpene lactones in cancer therapy.

Pharmacol Res

December 2024

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; DongTai People's Hospital, Dongtai, Jiangsu, China. Electronic address:

Regulated cell death (RCD) is a type of cell death modulated by specific signal transduction pathways. Currently, known RCD types include apoptosis, autophagy, ferroptosis, necroptosis, cuproptosis, pyroptosis, and NETosis. Mutations in cancer cells may prevent the RCD pathway; therefore, targeting RCD in tumors has become a promising therapeutic approach.

View Article and Find Full Text PDF

Cross-talk between cuproptosis and ferroptosis to identify immune landscape in cervical cancer for mRNA vaccines development.

Eur J Med Res

December 2024

Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China.

Messenger RNA (mRNA)-based vaccines present a promising avenue for cancer immunotherapy; however, their application in cervical cancer remains unexplored. This study investigated the interplay between the regulated cell death pathways of cuproptosis and ferroptosis to advance the development of mRNA vaccines for cervical cancer. We identified key cuproptosis-related and ferroptosis-related genes (CFRGs) from public mRNA profiles and determined their prognostic significance, mutation frequencies, and effect on the immune landscape.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is among the most malignant tumors, with the lowest five-year survival rate, and limited treatment options. Kynureninase (KYNU), is a key molecule in tryptophan metabolism and promotes tumor progression and immunosuppression. Cuproptosis is a non-apoptotic cell death mechanism, primarily due to oxidative stress caused by copper ion accumulation, that is related to tumor progression and drug resistance.

View Article and Find Full Text PDF

Interplay of cell death pathways and immune responses in ischemic stroke: insights into novel biomarkers.

Rev Neurosci

December 2024

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran.

Stroke is a severe neurological disease and a major worldwide issue, mostly manifesting as ischemic stroke (IS). In order to create effective treatments for IS, it is imperative to fully understand the underlying pathologies, as the existing therapeutic choices are inadequate. Recent investigations have shown the complex relationships between several programmed cell death (PCD) pathways, including necroptosis, ferroptosis, and pyroptosis, and their correlation with immune responses during IS.

View Article and Find Full Text PDF

Research advancements in the association between prevalent trace metals and connective tissue diseases.

Environ Geochem Health

December 2024

Department of Rheumatology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.

Connective tissue diseases (CTD) encompass a spectrum of autoimmune disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS), inflammatory myopathy (IIM), systemic sclerosis (SSc), among others. Recent research has highlighted the significant role of trace metals in the pathogenesis of connective tissue diseases. This article provides an overview of recent advancements in understanding the correlation between common trace metals such as iron, copper, zinc and CTD, aiming to offer novel insights for the diagnosis and treatment of these conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!