DNA tetrahedron nanoparticles service as a help carrier and adjvant of mRNA vaccine.

J Transl Med

Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

Published: November 2024

Aim Of The Study: To investigate the potential of DNA nanoparticles (DNPs) as carriers and adjuvants for mRNA vaccines.

Materials And Methods: Customized oligonucleotides were assembled into DNA tetrahedra (DNA-TH), which were subsequently complexed with streptavidin and mRNA encoding green fluorescent protein (GFP). Various assays were conducted to evaluat the stability of the DNPs, their cellular uptake, immune activation potential, and GFP mRNA transcription efficiency. P53-mutant HSC-3 cells were used to establish a subcutaneous xenograft tumor model to explore the effects of DNPs as carriers and adjuvants in a disease model.

Results: The DNPs were remained stable extracellularly and rapidly taken up by antigen-presenting cells. Compared to naked GFP mRNA, DNPs statistically significantly activated immune responses and facilitated GFP mRNA transcription and protein expression both in vitro and in vivo. Immunization with DNP-GFP mRNA complexes induced higher antibody titers compared to naked mRNA. The DNPs demonstrated good biocompatibility. DNP-p53 inhibited the growth of subcutaneous xenograft tumors in mice with p53-mutant HSC-3 cells, outperforming both the naked p53 mRNA and blank control groups, with a statistically significant difference (P < 0.05).

Conclusion: DNA nanoparticles show promise for improving mRNA vaccine delivery and efficacy. Further optimization of these nanoparticles could lead to highly effective mRNA vaccine carriers with broad applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566622PMC
http://dx.doi.org/10.1186/s12967-024-05837-wDOI Listing

Publication Analysis

Top Keywords

gfp mrna
12
mrna
9
dnps carriers
8
carriers adjuvants
8
mrna transcription
8
p53-mutant hsc-3
8
hsc-3 cells
8
subcutaneous xenograft
8
compared naked
8
mrna dnps
8

Similar Publications

Transcriptome and translatome profiling of Col-0 and grp7grp8 under ABA treatment in Arabidopsis.

Sci Data

December 2024

Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.

View Article and Find Full Text PDF

Efficient delivery of sensitive nucleic acid payloads, including mRNA, in remains challenging, especially with traditional, labor-intensive transgenesis methods. We addressed these challenges using polymeric nanogels (NGs) as an advanced platform for mRNA delivery in . These polymeric delivery vehicles can be engineered to suit desired applications owing to their chemical versatility, resulting from the ability to conjugate multiple functional groups onto the same backbone.

View Article and Find Full Text PDF

A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement.

Plant Biotechnol J

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China.

Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator.

View Article and Find Full Text PDF

Administration of AAV-based gene therapies into the intra-cerebrospinal fluid (CSF) compartments via routes such as lumbar puncture (LP) has been implemented as an alternative to intravenous dosing to target the CNS regions. This route enables lower doses, decreases systemic toxicity, and circumvents intravascular pre-existing anti-AAV antibodies. In this study, AAV9-GFP vectors were administered via LP to juvenile cynomolgus macaques with and without pre-existing serum anti-AAV9 antibodies at a 5.

View Article and Find Full Text PDF

RNA-based agents (siRNA, miRNA, and mRNA) can selectively manipulate gene expression/proteins and are set to revolutionize a variety of disease treatments. Nanoparticle (NP) platforms have been developed to deliver functional mRNA or siRNA inside cells to overcome their inherent limitations. Recent studies have focused on siRNA to knock down proteins causing drug resistance or mRNA technology to introduce tumor suppressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!