Background: Pseudomyxoma peritonei (PMP) is a rare malignant peritoneal tumor that readily recurs and metastasizes. Studies have shown that cancer stem cells (CSCs) play an important role in tumor recurrence, metastasis, and prognosis.
Objective: In this study, our aim was to isolate CSCs from various tissues of PMP patients and compare their proliferation, migration, and anti-inflammatory abilities.
Methods: We identified CSCs subsets with markers CD133, CD166, and CD133/CD166 at the gene level using single-cell mRNA sequencing (scRNA-seq). Appendiceal CSCs (AC), peritoneal CSCs (PC), and mucous CSCs (MC) were obtained using MACSQuant Tyto sorting technology and FlowSight imaging flow cytometry. The cells were cultured and markers were identified. Finally, the functional phenotypes of the three cell types were compared.
Results: CSCs content was highest in the appendiceal tumor tissue and lowest in the mucous tissue. The cell viability rate of the sorted CSCs was above 98%, and the positive rate of CD133 and CD166 was 70-80%, and CD133/CD166 was about 30%. Among the three types of CSCs, MC had the highest proliferation ability, and TNF-α has the greatest inhibitory effect on AC migration.
Conclusion: AC in patients was more inert and anti-inflammatory, whereas abdominal cavity MC and PC were more active. This study revealed the biological characteristics of CSCs in different tumor tissues of patients with PMP, providing a reference for future targeted CSCs therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566827 | PMC |
http://dx.doi.org/10.1186/s12967-024-05730-6 | DOI Listing |
Life Sci Alliance
March 2025
https://ror.org/00hj54h04 Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Department of Zoology (PG), Vellalar College for Women, Erode, India. Electronic address:
Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.
View Article and Find Full Text PDFJ Pathol
January 2025
Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China.
Aberrant expression of grainyhead-like transcription factor 3 (GRHL3) has been extensively reported in the development and progression of several squamous cell carcinomas, such as cutaneous, head and neck, and esophageal squamous cell carcinoma. However, the clinical significance and biological roles of GRHL3 in lung squamous cell (LUSC) carcinoma are largely unclear. Herein, we report that GRHL3 was significantly upregulated in lung squamous epithelium of LUSC tissues, bronchiole, and bronchus.
View Article and Find Full Text PDFBiomaterials
January 2025
National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China. Electronic address:
Immunotherapeutics against triple-negative breast cancer (TNBC) hold great promise. In this work, we provide a combination therapy for simultaneous increasing tumor immunogenicity and down-regulating programmed cell death ligand 1 (PD-L1) to boost antitumor immunity in TNBC. We prepare bis (diethyldithiocarbamate)-copper/indocyanine green nanoparticles (CuET/ICG NPs) simply in aqueous with one-pot method.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!