Background: Owing to their unique physiochemical properties, low toxicity, antipathogenic effects and tunability, fluorescent carbon quantum dots (CQDs) represent a new generation of carbon-based nanomaterials. Despite the mounting research on the efficacy of CQDs against resilient plant pathogens, their potential ability to mitigate viral pathogens and the underlying molecular mechanism(s) remain understudied. In this study, we optimized the CQDs to maximize their antiviral effects against a highly pathogenic Begomovirus (cotton leaf curl Multan virus, CLCuMuV) and elucidated the mechanistic pathways associated with CQDs-mediated viral inhibition. To fine-tune the CQDs-induced antiviral effects against CLCuMuV and investigate the underlying molecular mechanisms,we used HR-TEM, XRD, FT-IR, XPS, and UV‒Vis spectrophotometry to characterize the CQDs. SPAD and FluorCam were used for physiological and photosynthetic performance analysis. Transcriptome, RT‒qPCR, integrated bioinformatics and molecular biology were employed to investigate gene expression, viral quantification and data validation.
Results: The application of fluorescent, hexagonal crystalline, UV-absorptive and water-soluble CQDs (0.01 mg/ml) significantly reduced the CLCuMuV titer and mitigated viral symptoms in N. benthamiana at the early (5 dpi) and late (20 dpi) stages of infection. CQDs significantly increased the morphophysiological properties, relative chlorophyll contents and photosynthetic (Fv/Fm, QY_max, NPQ and Rfd) performance of the CLCuMuV-infected plants. While CLCuMuV infection disrupted plant immunity, the CQDs improved the antiviral defense response by regulating important immunity-related genes involved in endocytosis/necroptosis, Tam3-transposase, the ABC transporter/sphingolipid signaling pathway and serine/threonine protein kinase activities. CQDs potentially triggered TSS and TTS alternative splicing events in CLCuMuV-infected plants.
Conclusions: Overall, these findings underscore the antiviral potential of CQDs, their impact on plant resilience, and their ability to modulate gene expression in response to viral stress. This study's molecular insights provide a foundation for further research on nanomaterial applications in plant virology and crop protection, emphasizing the promising role of CQDs in enhancing plant health and combating viral infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562592 | PMC |
http://dx.doi.org/10.1186/s12951-024-02994-4 | DOI Listing |
Langmuir
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Magnetic fluorescent nanomaterials have broad application prospects as taggants in fields such as anticounterfeiting identification, suspicious object tracking, and potential fingerprint recognition in forensic medicine. It is a common method to synthesize magnetic fluorescent composite nanoparticles by preparing a shell on the surface of magnetic particles to load fluorescent materials. In this work, a magnetic fluorescence nanohybrid was synthesized by in situ encapsulation of carbon quantum dots (CQDs) during the preparation of a SiO shell on the surface of FeO nanoparticles.
View Article and Find Full Text PDFChemphyschem
December 2024
Indian Institute of Technology Jodhpur, Chemistry, NH65, Surpura bypass road, karwar, 342037, Jodhpur, INDIA.
To improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.
It is known that large-scale synthesis of emitters affords colloidal quantum dot (CQD) materials with a great opportunity toward the mass production of quantum dot light-emitting diodes (QLEDs) based commercial electronic products. Herein, an unprecedented example of scalable CQD (> 0.5 kilogram) is achieved by using a core/shell structure of CdZnSe/ZnSeS/CdZnS, in which CdZnSe, ZnSeS, and CdZnS alloys are used as the inner core, transition layer and outermost shell, respectively.
View Article and Find Full Text PDFVirology
December 2024
Centre for Pre-clinical Studies (CPS), CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India. Electronic address:
The world witnessed disturbingly rapid unfolding of COVID-19 pandemic with emergence of SARS-CoV-2 virus resulting in severe morbidity and mortality and it still persists through incessant transmission across the globe even after years. Since the last decade, carbon quantum dots (CQDs) have gained much attention due to their favourable aqueous solubility, nano size (<10 nm), inherent fluorescence, biocompatibility, and environment friendliness. In the wider search for effective strategies for treatment, prevention, and diagnosis of SARS-CoV-2 virus, nanotechnology-based formulation using CQDs have emerged as an interesting option.
View Article and Find Full Text PDFHeliyon
December 2024
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, 44971, Egypt.
Searching for natural alternatives to replace environmentally harmful chemical reagents in analysis is just as crucial as finding easily accessible analytical tools. To reinforce these concepts, this study proposes a simple spectrofluorometric approach using natural carbon quantum dots (n-CQDs) as fluorescence probes for sensitive and environmentally friendly measurement of molnupiravir, an antiviral drug that was initially developed for influenza and has demonstrated potential efficacy against COVID-19. n-CQDs were synthesized using garlic peels (GP), a waste material, via a microwave-assisted method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!