Future climates will realise increasingly frequent extreme weather events, which will impact on the quantum and quality of crop production. While effects of extreme heat on crop production have been well studied hitherto, there remains a dearth of knowledge pertaining to the impacts of extreme heat on grain quality. As such, our purpose here was to evaluate the effects of terminal heat stress on the physicochemical properties and composition of seed oil of safflower plants. Using two contemporary cultivars with varying genetic tolerance to heat stress (Faraman and Sofeh), we found that exposure to extreme heat reduced grain yield by 53-57%. Four fatty acids (palmitic, stearic, oleic and linoleic acid) comprised 96-99% of total fatty acid methyl esters; relative composition varied in response to heat stress and other environmental conditions. In the first experimental year (2017-18), saturated fatty acids in Sofeh and Faraman cultivars increased by 69% and 18% respectively, while unsaturated fatty acids decreased by 9% and 4%, respectively. In the second experimental year (2018-19), saturated fatty acids increased by 10% in Sofeh and by less than 1% in Farman, while unsaturated fatty acids in both cultivars were not significantly altered. Physicochemical parameters differed across years and cultivars; exposure to high temperature increased chlorophyll and carotenoid content in Sofeh, but decreased the said parameters in Faraman. In 2017-18, effects of heat stress on thiobarbituric acid were variable, but in 2018-19, thiobarbituric acid increased in both cultivars. In all cases, saponification and iodine content increased in response to heat stress. In sum, the fatty acid profile of safflower exposed to terminal heat stress was less affected compared with oil physicochemical parameters, due to greater temperature sensitivity of the latter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566086 | PMC |
http://dx.doi.org/10.1186/s12870-024-05781-3 | DOI Listing |
World J Orthop
December 2024
Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil.
The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Ningxia University, Yinchuan, China.
Introduction: Postpartum dairy cows are susceptible to negative energy balance caused by decreased feed intake and the initiation of lactation. Sijunzi San, a famous Chinese traditional herbal formulation, can promote gastrointestinal digestion and absorption and improve disorders of intestinal microbiota. Therefore, we hypothesized that Sijunzi San might alleviate negative energy balance in postpartum dairy cows by modulating the structure of the rumen microbiota and enhancing its fermentation capacity.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Institute of Dairy and Animal Sciences, University of Agriculture, Faisalabad, Pakistan.
Introduction: High-producing dairy cows often face calving stress and reduced feed intake during the transition period, leading to body fat mobilization to meet production demands. Supplementing rations with energy-dense sources like rumen-protected glucose (RPG) may enhance production performance in early lactation.
Methods: This study evaluated the effects of RPG supplementation on feed intake, body condition score (BCS), production performance, and blood metabolites in 32 early-lactation Holstein Friesian cows (6 ± 1 DIM; milk yield: 30 ± 5 kg/day; body weight: 550 ± 50 kg; BCS: 3.
Front Immunol
January 2025
University of Michigan, Department of Internal Medicine, Ann Arbor, MI, United States.
Introduction: Despite progress in systemic lupus erythematosus (SLE) treatment, challenges persist in medication adherence due to side effects and costs. Precision nutrition, particularly adjusting fatty acid intake, offers a cost-effective strategy for enhancing SLE management. Prior research, including our own, indicates that increased consumption of omega-3 polyunsaturated fatty acids (PUFAs) correlates with improved outcomes in SLE patients.
View Article and Find Full Text PDFFront Microbiol
December 2024
Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.
Introduction: The development of the human gut microbiota is shaped by factors like delivery mode, infant feeding practices, maternal diet, and environmental conditions. Diet plays a pivotal role in determining the diversity and composition of the gut microbiome, which in turn impacts immune development and overall health during this critical period. The early years, which are vital for microbial shaping, highlight a gap in understanding how the shift from milk-based diets to solid foods influences gut microbiota development in infants and young children, particularly in Yaoundé, Cameroon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!