Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study explores the application of machine learning techniques for detecting and tracking plasma filaments around the boundary of magnetically confined tokamak plasmas. Plasma filaments, also called blobs, are responsible for enhanced turbulent transport across magnetic field lines, and their accurate characterization is crucial for optimizing the performance of magnetic fusion devices. We present a novel approach that combines machine learning methods applied to data obtained from ultra-fast cameras, including YOLO (You Only Look Once) for object detection, semantic segmentation, and specific tracking methods. This approach enables fast and accurate detection and tracking of filaments while overcoming the limitations of conventional methods, which are time-consuming and prone to human subjectivity. A significant advance in our study lies in the development of a method for automatically labeling a large batch of data, which greatly facilitates the training of supervised machine learning algorithms. Using these techniques, we obtained promising results demonstrating a significant improvement over conventional tracking methods, achieving a detection accuracy of up to 98.8%, while reducing the inference time per frame by 15% to 31% compared to conventional Kalman filter tracking. These results open up new perspectives for investigating turbulent phenomena in tokamaks, and could have important implications for the development of controlled nuclear fusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564565 | PMC |
http://dx.doi.org/10.1038/s41598-024-79251-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!