AI Article Synopsis

Article Abstract

Efficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism. Furthermore, an integrated neural network model based on the filtered scRNA-seq data is successfully constructed and validated to predict the metastatic state trajectory of cancer cells. Overall, our study provides an insight to locate the pre-metastasis status of lung cancer and primarily examines its clinical application value, contributing to the early detection of lung cancer metastasis in a more feasible and efficacious way.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564768PMC
http://dx.doi.org/10.1038/s41467-024-53849-3DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
cancer cells
12
cancer
9
dynamic network
8
network biomarker
8
early detection
8
detection lung
8
cancer metastasis
8
metastatic state
8
state trajectory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!