Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajem.2024.11.015 | DOI Listing |
Adv Mater
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.
View Article and Find Full Text PDFACS Nano
December 2024
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
Alloy nanocatalysts exhibit enhanced activity, selectivity, and stability mainly due to their versatile phases and atomic structures. However, nanocatalysts' "real" functional structures may vary from their as-synthesized status due to the structural and chemical changes during the activation and reaction conditions. Herein, we studied the activated CuPd/CeO nanocatalysts under the CO oxidation reaction featuring an atomic-scale phase separation process, resulting in a notable "hysteresis" in catalyst performance.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore.
A Rashba spin-splitting state with spin-momentum locking enables the charge-spin interconversion known as the Rashba effect, induced by the interplay of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC). Enhancing spin-splitting strength is promising to achieve high spin-orbit torque (SOT) efficiency for low-power-consumption spintronic devices. However, the energy scale of natural ISB at the interface is relatively small, leading to the weak Rashba effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Energy and Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China.
ACS Nano
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Oxide superlattices reveal a rich array of emergent properties derived from the composition modulation and the resulting lattice distortion, charge transfer, and symmetry reduction that occur at the interfaces between the layers. The great majority of studies have focused on perovskite oxide superlattices, revealing, for example, the appearance of an interfacial 2D electron gas, magnetic moment, or improper ferroelectric polarization that is not present in the parent phases. Garnets possess greater structural complexity than perovskites: the cubic garnet unit cell contains 160 atoms with the cations distributed between three different coordination sites, and garnets exhibit a wide range of useful properties, including ferrimagnetism and ion transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!