[Progress in application of medical absorbable haemostatic materials for haemostasis in orthopaedic surgery].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi

Department of Orthopaedics, Institute of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China.

Published: November 2024

Objective: The application progress of medical absorbable haemostatic material (MAHM) in hemostasis during orthoapedic surgery was reviewed, in order to provide reference for clinical hemostasis program.

Methods: The domestic and foreign literature on the application of MAHM for hemostasis in orthopedic surgery was extensively reviewed and summarized.

Results: According to biocompatibility, MAHM can be divided into oxidized cellulose/oxidized regenerated cellulose materials, chitosan and its derivatives materials, starch materials, collagen and gelatin materials, and fibrin glue materials, , which can effectively reduce blood loss when used in orthopedic surgery for hemostasis. Each hemostatic material has different coagulation mechanism and suitable population. Oxidized cellulose/oxidized regenerated cellulose, chitosan and its derivatives, starch hemostatic material mainly stops bleeding by stimulating blood vessel contraction and gathering blood cells, which is suitable for people with abnormal coagulation function. Collagen, gelatin and fibrin glue hemostatic materials mainly affect the physiological coagulation mechanism of the human body to stop bleeding, suitable for people with normal coagulation function.

Conclusion: Reasonable selection of MAHM can effectively reduce perioperative blood loss and reduce the risk of postoperative complications, but at present, single hemostatic material can not meet clinical needs, and a new composite hemostatic material with higher hemostatic efficiency needs to be developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563752PMC
http://dx.doi.org/10.7507/1002-1892.202405068DOI Listing

Publication Analysis

Top Keywords

hemostatic material
16
medical absorbable
8
absorbable haemostatic
8
mahm hemostasis
8
orthopedic surgery
8
oxidized cellulose/oxidized
8
cellulose/oxidized regenerated
8
regenerated cellulose
8
chitosan derivatives
8
collagen gelatin
8

Similar Publications

Hemostasis Strategies and Recent Advances in Hydrogels for Managing Uncontrolled Hemorrhage.

ACS Appl Bio Mater

January 2025

Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China.

Hemorrhage continues to pose a significant challenge in various medical contexts, underscoring the need for advanced hemostatic materials. Hemostatic hydrogels have gained recognition as innovative tools for addressing uncontrollable bleeding, attributed to their distinctive features including biological compatibility, tunable mechanical properties, and exceptional hemostatic performance. This review provides a comprehensive overview of hemostatic hydrogels that offer rapid and effective bleeding control.

View Article and Find Full Text PDF

Chitosan-based materials are known for their excellent biocompatibility and inherent hemostatic properties. However, their hemostatic efficiency is significantly affected by poor wettability and mechanical strength. Herein, we developed a novel hemostatic super elastic sponge from mussel-inspired chitosan modified with long alkyl and catechol functional groups (HMCC) via a simple freezing-drying procedure.

View Article and Find Full Text PDF

Extraction, characterization, and hemostatic effect of collagen from the scales of Megalonibea fusca.

J Food Sci

December 2024

Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.

Marine collagen is gaining more attraction than terrestrial collagen because it is free of zoonotic disease and religious constrain. In this study, we aimed to investigate and compare the physicochemical properties and functional characteristics of acid-soluble collagen (ASC-MF) and pepsin-soluble collagen (PSC-MF) extracted from scales of Megalonibea fusca. ASC-MF and PSC-MF were evaluated in terms of yield, collagen type, amino acid composition, thermal stability, microstructure, cytotoxicity, and other physicochemical parameters.

View Article and Find Full Text PDF

Background: Preeclampsia (PE) is a pregnancy complication characterized by hypertension, proteinuria, endothelial dysfunction, and complement dysregulation. Placenta-derived extracellular vesicles (EVs), necessary in maternal-fetal communication, might contribute to PE pathogenesis. Moreover, neutrophil extracellular traps (NETs) play a pathogenic role in other complement-mediated pathologies, and their contribution in PE remains unexplored.

View Article and Find Full Text PDF

Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.

Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!