A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

UNIQUE: A Framework for Uncertainty Quantification Benchmarking. | LitMetric

UNIQUE: A Framework for Uncertainty Quantification Benchmarking.

J Chem Inf Model

Novartis Biomedical Research, Novartis Campus, 4002 Basel, Switzerland.

Published: November 2024

Machine learning (ML) models have become key in decision-making for many disciplines, including drug discovery and medicinal chemistry. ML models are generally evaluated prior to their usage in high-stakes decisions, such as compound synthesis or experimental testing. However, no ML model is robust or predictive in all real-world scenarios. Therefore, uncertainty quantification (UQ) in ML predictions has gained importance in recent years. Many investigations have focused on developing methodologies that provide accurate uncertainty estimates for ML-based predictions. Unfortunately, there is no UQ strategy that consistently provides robust estimates about model's applicability on new samples. Depending on the dataset, prediction task, and algorithm, accurate uncertainty estimations might be unfeasible to obtain. Moreover, the optimum UQ metric also varies across applications, and previous investigations have shown a lack of consistency across benchmarks. Herein, the UNIQUE (UNcertaInty QUantification bEnchmarking) framework is introduced to facilitate a comparison of UQ strategies in ML-based predictions. This Python library unifies the benchmarking of multiple UQ metrics, including the calculation of nonstandard UQ metrics (combining information from the dataset and model), and provides a comprehensive evaluation. In this framework, UQ metrics are evaluated for different application scenarios, e.g., eliminating the predictions with the lowest confidence or obtaining a reliable uncertainty estimate for an acquisition function. Taken together, this library will help to standardize UQ investigations and evaluate new methodologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600502PMC
http://dx.doi.org/10.1021/acs.jcim.4c01578DOI Listing

Publication Analysis

Top Keywords

uncertainty quantification
12
quantification benchmarking
8
accurate uncertainty
8
ml-based predictions
8
uncertainty
6
unique framework
4
framework uncertainty
4
benchmarking machine
4
machine learning
4
learning models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!