AI Article Synopsis

  • Biomaterials-based scaffolds using chitosan and modified sepiolite with copper were developed for enhanced wound healing and angiogenesis.
  • The optimal scaffold, CS/MS/Cu0.1, showed significant improvements in mechanical properties and swelling ability, leading to effective tissue regeneration.
  • In vivo studies indicated that these scaffolds promoted faster wound healing and collagen deposition without causing toxicity, highlighting their potential for clinical applications in regenerative medicine.

Article Abstract

Biomaterials-based scaffolds are extensively explored for their proangiogenic and tissue regenerative abilities. The present study aimed to develop wound healing scaffolds based on chitosan/aminopropyldiethoxymethylsilane (APDEMS) modified sepiolite, loaded with copper (0-0.25 g), characterized by FTIR, SEM, mechanical, TGA and analyzed biomedically. The FTIR and SEM confirmed the silane-induced cross-linking and incorporation of copper leading to better dispersion of individual components in the scaffolds. Based on other physicochemical observations, the best scaffold was CS/MS/Cu0.1 (99.5 % increased Young's modulus compared to chitosan, maximum swelling = 900 %, equilibrium time = 70 min); So, CS/MS/Cu0.1 and 0.25 were chosen for further analysis. The CAM assay showed significantly increased angiogenesis in CS/MS/Cu0.1 and 0.25 groups, lacking any developmental anomalies in chick embryos, at lower copper concentrations. The scaffolds' wound healing potential and in-vivo toxicity were assessed by wound excision and histopathology of various organs in mice, respectively. The rate of wound contraction in the CS/MS/Cu0.1 group was significantly (P < 0.05) greater than the control. The abovementioned results corroborated the histological and biochemical findings regarding more collagen deposition in regenerated skin sections and insignificant deviations in biochemical parameters of treated mice, respectively. The formulated biomaterials have proven promising materials for promoting angiogenesis in chick models and accelerating regeneration in mice skin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137538DOI Listing

Publication Analysis

Top Keywords

scaffolds based
12
wound healing
8
ftir sem
8
cs/ms/cu01 025
8
copper
4
copper functionalized
4
functionalized pro-angiogenic
4
pro-angiogenic skin
4
skin regenerative
4
scaffolds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!