The membrane-bound O-acyltransferase (MBOAT) gene family comprises enzymes responsible for transferring acyl groups to various lipid molecules. Some members of the MBOAT gene family and their functions have been extensively studied in the model plant Arabidopsis. However, research on the MBOAT gene family in camelina is still limited. In this study, 54 MBOATs were identified on 17 chromosomes and one unidentified scaffold in camelina, including seven newly identified genes. A total of 149 MBOATs were identified in 10 other species. Six subgroups of these MBOATs with different conservation were classified by phylogenetic analysis, showing diversification between monocots and dicots. Detailed analysis of the motif composition, evolutionary relationships, and gene structures of CsaMBOATs are presented. The results of the syntenic analysis suggest that the evolution of CsaMBOAT gene family is primarily driven by segmental and tandem duplications, and that there is a stronger collinearity within dicots. In addition, analysis of CsaMBOAT gene promoter cis-elements reveals a possible transcriptional regulation and tissue-specific expression, highlighting potential role in plant stress responses and hormone signaling. Furthermore, both the transcriptome and RT-qPCR data revealed the changes in the expression levels of DGAT1 during salt stress treatment. Subsequent analyses indicated that DGAT1 influenced the ratio of fatty acid fractions in the plants. Importantly, a large number of transcription factors involved in the regulation of CsaMBOAT gene expression were identified by WGCNA analysis, and the transcriptional data confirmed that the NAC032 and CAMMTA6 genes play a role upstream of DGAT1. This study not only identified the members of the MBOAT in camelina, but also provided insights and clues into its regulatory mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2024.149085DOI Listing

Publication Analysis

Top Keywords

gene family
20
mboat gene
16
csamboat gene
12
gene
8
members mboat
8
mboats identified
8
mboat
5
family
5
identified
5
analysis
5

Similar Publications

Joubert Syndrome (JS) is a congenital cerebellar ataxia typically inherited in an autosomal recessive pattern, although rare X-linked inheritance can occur. It is characterized by hypotonia evolving into ataxia, global developmental delay, oculomotor apraxia, breathing dysregulation, and multiorgan involvement. To date, there are 40 causative genes implicated in JS, all of which encode proteins of the primary cilium.

View Article and Find Full Text PDF

The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).

View Article and Find Full Text PDF

Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo).

Genes Genomics

January 2025

Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.

Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.

View Article and Find Full Text PDF

Complex traits influenced by multiple genes pose challenges for marker-assisted selection (MAS) in breeding. Genomic selection (GS) is a promising strategy for achieving higher genetic gains in quantitative traits by stacking favorable alleles into elite cultivars. Resistance to Fusarium oxysporum f.

View Article and Find Full Text PDF

Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!