A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nano-enhanced benzylpenicillin: Bridging antibacterial action with anti-inflammatory potential against antibiotic-resistant bacteria. | LitMetric

Nano-enhanced benzylpenicillin: Bridging antibacterial action with anti-inflammatory potential against antibiotic-resistant bacteria.

Microbes Infect

Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, 21941906, RJ, Brazil; Rio de Janeiro State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200, RJ, Brazil. Electronic address:

Published: November 2024

This study investigates the enhancement of benzylpenicillin's antibacterial properties using nanomedicine, specifically by developing benzylpenicillin nanoemulsions. To address the escalating issue of bacterial resistance, we employed the advanced techniques Raman spectroscopy and atomic force microscopy to analyze the nanoemulsions' molecular structure and characteristics. We then evaluated the impact of these nanoemulsions on nitric oxide production by macrophages to deternine their potential to modulate inflammatory responses. We further assessed the antibacterial effectiveness of the nanoparticles against the pathogens Streptococcus pyogenes (Group A Streptococcus) and Streptococcus agalactiae (Group B Streptococcus). The results of antibiograms showed significant efficacy against Gram-positive bacteria, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, confirming their bactericidal potential. The investigation into the mechanism of action suggested substantial disruption to bacterial membrane integrity, underscoring a possible mode of antibacterial activity. Overall, the study provides valuable insights into the synergistic relationship between antibiotics and nanoparticles. In particular, it demonstrates the potential of benzylpenicillin nanoparticles to enhance the antimicrobial efficacy and influence inflammatory responses obtained by evaluating nitrite, IL-6 and TNF-α, offering promising avenues for future clinical applications and strategies to combat bacterial resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2024.105436DOI Listing

Publication Analysis

Top Keywords

bacterial resistance
8
inflammatory responses
8
group streptococcus
8
nano-enhanced benzylpenicillin
4
benzylpenicillin bridging
4
antibacterial
4
bridging antibacterial
4
antibacterial action
4
action anti-inflammatory
4
potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!