SIRT7 stabilizes β-catenin and promotes canonical Wnt activation via upregulating FZD7.

Life Sci

The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China; Institute of Interdisciplinary Studies, Hunan Normal University, Hunan 410081, China. Electronic address:

Published: December 2024

Aims: The dysregulated Wnt/β-Catenin signaling pathway leads to occurrence of various diseases, and abnormal activation of β-Catenin is a major characteristic of human HCC. FZD7 is a positive regulator of the Wnt/β-catenin signaling pathway, and its upregulation is related to increase of β-catenin expression and carcinogenesis in human HCC. However, mechanisms underlying FZD7 upregulation in HCC remain elusive.

Main Methods: Nuclear cytosol fractionation, immunofluorescence and Top-Flash were used to detect the activation of β-Catenin. Protein half-life and ubiquitination assays were applied to evaluate protein stability. RNA-seq combined with qRT-PCR was used to evaluate differential gene expressions after SIRT7 knockdown. Wound healing and transwell assays were used to measure cancer cell migration.

Key Findings: SIRT7-mediated FZD7 expression is essential for stability and activation of β-catenin. Knockdown SIRT7 in HCC cells resulted in enhanced binding of β-catenin to the DC, decreased its stability, nuclear localization and activation. Knockdown FZD7 reversed SIRT7 overexpression mediated β-catenin stabilization and impairment of binding of β-catenin to the DC. At molecular level, SIRT7 promotes FZD7 expression via upregulating transcription factor PU.1, knockdown PU.1 abolished SIRT7-mediated upregulation of FZD7. Finally, we confirmed that FZD7 was responsible for SIRT7-mediated β-catenin stabilization and HCC cells migration. By using clinical samples, we observed strong positive correlations between SIRT7 and PU.1, FZD7, p-GSK3β and β-Catenin in human HCC.

Significance: Our results thus revealed a previously undisclosed role of SIRT7 in regulating the canonical Wnt/β-catenin signaling pathway, thereby offering additional evidence that SIRT7 holds promise as a novel therapeutic target for human HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2024.123240DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin signaling
12
signaling pathway
12
activation β-catenin
12
human hcc
12
β-catenin
10
fzd7
9
sirt7
8
fzd7 expression
8
hcc cells
8
binding β-catenin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!