A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HO-1-mediated ferroptosis regulates retinal neovascularization via the COX2/VEGFA axis. | LitMetric

HO-1-mediated ferroptosis regulates retinal neovascularization via the COX2/VEGFA axis.

Free Radic Biol Med

Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China. Electronic address:

Published: January 2025

Retinal neovascularization (RNV) is a key pathological process in many blinding disorders. This study aims to investigate the potential mechanisms of heme oxygenase-1 (HO-1) on ferroptosis during RNV. Through bioinformatics analysis, differentially expressed ferroptosis-related genes were identified in the oxygen-induced retinopathy (OIR) mouse model. Ferroptosis was assessed in the OIR model and the human retinal microvascular endothelial cells (HRECs) with the treatment of HO. The mRNA and protein levels were measured through RT-qPCR and western blot. Lipid peroxidation was assessed through C11-BODIPY staining. HO-1 expression was knocked down by intravitreal injection with a self-complementary adeno-associated virus in the OIR model and small interfering RNA in HRECs. The pathological neovascular area and avascular area were assessed through immunofluorescent staining. The cellular functions of HRECs were evaluated with migration and tube formation assays. Our results demonstrated that HO-1 was significantly upregulated in the OIR model. 4-HNE upregulation and GPX4 downregulation were observed in the OIR model. The HO-induced oxidative stress resulted in lipid peroxidation, GPX4 downregulation, and mitochondrial morphology changes in HRECs. HO-1 knockdown induced GPX4 upregulation, and decreased lipid peroxidation in vitro and in vivo. Furthermore, HO-1 inhibition reduced pathological RNV in the OIR model and attenuated migration and tube formation in HRECs. Treatment with 6-OHDA restored the decrease of VEGFA, migration, and tube formation caused by HO-1 knockdown in HRECs. Overall, HO-1-mediated ferroptosis can regulate RNV through the COX2/VEGFA signal axis. These findings suggest that targeting HO-1 may serve as a promising approach for treating retinal neovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.11.017DOI Listing

Publication Analysis

Top Keywords

oir model
20
lipid peroxidation
12
migration tube
12
tube formation
12
ho-1-mediated ferroptosis
8
retinal neovascularization
8
hrecs treatment
8
gpx4 downregulation
8
ho-1 knockdown
8
ho-1
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!