Factors that influence the migration of sorbed pesticides in polyethylene and biodegradable mesoplastics.

Environ Pollut

Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Electronic address:

Published: January 2025

Trifluralin, Chlorpyrifos, and Procymidone migration performance from polyethylene (PE) and biodegradable (Mater-Bi: M-B) mulching films was examined. Desorption of pesticides from PE and M-B was studied using soil-plastic microcosms, considering temperature, soil humidity, and mulching film type as experimental variables. Trifluralin and Chlorpyrifos desorption was higher for PE than for M-B under all experimental conditions. In both cases, as the temperature increased from 25 °C to 40 °C, pesticide migration also increased, whereas as the soil humidity raised from 30% to 60%, pesticide desorption decreased. In the case of Procymidone, migration from PE and M-B at 25 °C was similar under both soil moisture conditions. Migration percentages were similar for both mulch films at 40 °C and 30% soil humidity. However, at higher soil moisture (60%), migration from M-B was greater than from PE. A linear relationship was observed between the percentage of migration and the vapor pressure of the pesticides. In all cases, migration increased with higher vapor pressure, indicating a possible migration mechanism in the vapor phase. Pesticide migration increased at high temperatures (40 °C). The effect of soil humidity in reducing pesticide migration was more significant at lower levels (30%). In addition, the mesoplastic sorption of pesticides in soil columns was studied using PE and M-B films. While the recoveries for Trifluralin, Chlorpyrifos, and Procymidone in the PE films were 0.05% ± 0.01%, 0.13% ± 0.03%, and non-detectable, the recoveries for M-B were: 0.49% ± 0.07%, 0.31% ± 0.09%, and 0.17% ± 0.10%, respectively, indicating that M-B was a better adsorbent than PE in all cases. This behavior should be considered in combination with the lower migration percentages observed for this type of mulching film in the microcosm experiments. These results could indicate a potential carrier effect of pesticide on biomesoplastic in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125205DOI Listing

Publication Analysis

Top Keywords

soil humidity
16
migration
12
trifluralin chlorpyrifos
12
pesticide migration
12
migration increased
12
polyethylene biodegradable
8
chlorpyrifos procymidone
8
procymidone migration
8
m-b
8
mulching film
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!