Antennal olfactory responses in the black soldier fly Hermetia illucens.

J Insect Physiol

Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy.

Published: December 2024

The Black Soldier Fly (BSF) is considered as the "crown jewel" of the insect feed industry and circular economy, significantly contributing to the 2030 Sustainable Development Goals by reducing carbon dioxide emissions and enabling circular management of organic waste, animal manure, and plant residues. Despite their industrial importance, limited knowledge about adult BSF biology has hindered optimal mass production. In this context, the present paper aims to explore the olfactory capabilities of both male and female BSF in response to various odorants commonly associated with organic decomposition in substrates suitable for mate encounters and egg laying. This will be achieved by performing electroantennographic recordings and scanning electron microscopy (SEM) observations on the antennal sensilla. Our results demonstrate for the first time the supposed olfactory capabilities of BSF antennae and present a first dataset of substances emitted by decaying organic matter detected by both male and female flies. Additionally, the current EAG recordings allowed comparisons with molecular data previously obtained through in silico and in vitro methods, highlighting the need for caution and strongly supporting a multidisciplinary approach as the best tool for investigating insect chemical ecology. These findings advance our understanding of BSF chemical ecology, which is crucial for effective reproduction and could significantly optimize global breeding systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2024.104722DOI Listing

Publication Analysis

Top Keywords

black soldier
8
soldier fly
8
olfactory capabilities
8
male female
8
chemical ecology
8
bsf
5
antennal olfactory
4
olfactory responses
4
responses black
4
fly hermetia
4

Similar Publications

A feasibility study on the use of near infrared spectroscopy to predict fatty acid concentration in intact black soldier fly reared in different waste streams.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia. Electronic address:

The black soldier fly larvae (BSFL) are well known to utilise a wide variety of organic waste streams, delivering a product rich in protein (30-50%) and lipids (15-49%) and other micronutrients. The objective of this study was to evaluate the ability of NIR spectroscopy combined with chemometrics to predict the concentration of fatty acids in BSFL reared in different commercial waste streams. Intact BSFL samples were analysed using a bench top NIR instrument where calibration models for fatty acids were developed using partial least squares (PLS) regression.

View Article and Find Full Text PDF

Background: The inclusion of sustainable protein sources in poultry feed has become essential for improving animal welfare in livestock production. Black soldier fly larvae are a promising solution due to their high protein content and sustainable production. However, most research has focused on fast-growing poultry breeds, while the effects on native breeds, such as the Bianca di Saluzzo, are less explored.

View Article and Find Full Text PDF

Modulating the fatty acid composition of black soldier fly larvae via substrate fermentation.

Animal

November 2024

CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium. Electronic address:

Black soldier fly larvae (BSFL, Hermetia illucens) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (FAs), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate.

View Article and Find Full Text PDF

Comprehensive industry-relevant black soldier fly bioconversion characterisation by a novel chamber system.

Waste Manag

December 2024

ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9 8092, Zurich, Switzerland; Singapore-ETH Centre,1 Create Way 138602, Singapore.

Black soldier fly larvae (BSFL) efficiently convert biowaste into valuable animal feed. Sustainable and reliable bioconversion is desirable to achieve optimal economic and environmental outcomes. Thus, science and industry require an accessible research platform to study complex bioconversion processes under conditions mirroring industrial-scale settings.

View Article and Find Full Text PDF

The unique fatty acid composition of BSF larvae oil makes it suitable for various applications, including use in animal feed, aquaculture, biodiesel production, biomaterials, and the food industry. Determination of BSF larvae composition usually requires analytical methods with chemicals, thus needing emerging techniques for fast characterization of its composition. In this study, Near Infrared Hyperspectral Imaging (NIR-HSI) (928 - 2524 nm) coupled with chemometrics was applied to predict the lipid content and fatty acid composition in intact black soldier fly (BSF) larvae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!