Long-term effects of thinning on soil organic carbon fractions and carbon pool management indices in secondary forests of heavily burned areas.

J Environ Manage

School of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:

Published: December 2024

Despite decades of recovery, soil carbon in heavily burned areas has failed to reach pre-fire levels. It is unclear whether stand management practices can promote soil organic carbon accumulation at such sites. This study evaluated the changes in soil labile organic carbon (LOC) fractions (including dissolved organic carbon (DOC), microbial biomass carbon (MBC), and easily oxidizable organic carbon (EOC)) and the carbon pool management index (CPMI) after the thinning of a heavily burned area in the Daxing'an Mountains and selected sample plots. This study compared thinned birch secondary forests (17 years (17a-S), 14 years (14a-U), 2 years (2a-S) post-thinning, where 17a-S and 2a-S were strip thinned and 14a-U was uniform thinned) with unthinned control (CK) plots. The contents of soil LOC and CPMI at a depth of 0-10 cm were found to increase with thinning, indicating that thinning promoted the accumulation of soil organic carbon in secondary forests in heavily burned areas. The two-way ANOVA showed that the differences in C fractions and CPMI at different times after thinning were significant, whereas the differences between thinning methods were not significant. In comparison to CK, only the DOC content was found to be significantly elevated at 2a-S. However, at both 14a-U and 17a-S, the elevation of the LOC fraction content reached a significant level. Among them, 14a-U demonstrated the most pronounced improvement (DOC (+11.37%), MBC (+42.80%), and EOC (+19.51%)). The CPMI at the 0-10 cm depth also increased significantly (18.20% ∼ 27.77%) at 14a-U. The study revealed that soil bulk density and understorey vegetation biomass were the main influences on the changes in soil LOC fractions and CPMI post-thinning. This finding also indicates that greater attention should be given not only to the soil itself but also to the understorey vegetation during forest soil carbon restoration under conservation management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123273DOI Listing

Publication Analysis

Top Keywords

organic carbon
24
heavily burned
16
soil organic
12
secondary forests
12
burned areas
12
carbon
11
soil
10
carbon pool
8
pool management
8
forests heavily
8

Similar Publications

A biohydrogen and polyhydroxyalkanoates(PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response.

View Article and Find Full Text PDF

Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.

View Article and Find Full Text PDF

Evaluating the performance and stability of microalgal-bacterial granular sludge in municipal wastewater treatment plants.

J Environ Manage

December 2024

Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China. Electronic address:

The microalgal-bacterial granular sludge (MBGS) process shows potential for carbon-neutral wastewater treatment, yet its application in wastewater treatment plants remains underexplored. This study attempted to use a continuous-flow raceway reactor to treat real municipal wastewater using the MBGS process. The results showed that the removal efficiencies of organics peaked on the fifth day, while declining trends were observed for nitrogen and phosphorus removal.

View Article and Find Full Text PDF

Estimation method for karst carbon sinks on the basis of a concentration prediction model.

J Environ Manage

December 2024

School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China. Electronic address:

Karstification can reduce the CO concentration in the atmosphere/soil. Accurate estimation of karst carbon sinks is crucial for the study of global climate change. In this study, the Lijiang River Basin was taken as the research area.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!