Single-energy quantitative computed tomography (SEQCT) provides volumetric bone mineral density (vBMD) measures for bone analysis and input to image-based finite element models (FEMs). Dual-energy CT (DECT) improves vBMD by accounting for voxel-specific material variations utilizing scans at multiple x-ray energies. vBMD is also altered by reconstruction kernel that cannot be accounted for using calibration phantoms. This study compared vBMD and FEM stiffness derived from SEQCT and DECT images reconstructed with two common kernels. SEQCT and DECT images of cadaveric shoulders (n = 10) were collected using standard (STD) and boneplus (BONE) kernels. Hounsfield Units were converted to vBMD using specimen-specific calibrations. DECT STD and BONE images were generated using an established material decomposition method with 40 and 90 keV simulated monochromatic images. A proximal humerus bone section below the anatomic neck was used for vBMD analysis and FEM generation. FEMs were loaded to 1% apparent strain for stiffness measurements. Between STD and BONE kernel images, average vBMD differed 0.9 mg/cc and 4.1 mg /cc, in SEQCT and DECT images, respectively. Significant differences occurred in DECT images (p = 0.001). BONE reconstructed images produced higher vBMD measures across both SEQCT and DECT images. The difference between STD and BONE in both SEQCT- and DECT-based FEMs persisted, with larger estimated stiffness in BONE models. For six of the models DECT-based had higher stiffness than SEQCT-based models using the same kernel, although these models differed between STD and BONE kernels. Differences in stiffness between STD and BONE derived models were similar across image types (DECT: 17.5 kN/mm; SEQCT: 19.0 kN/mm). Stiffness values were significantly different within SECT kernels and between SEQCT BONE and DECT STD models. This study shows important differences in vBMD and FEM stiffness that occur due to CT-based imaging parameters alone. These results indicate that consistent imaging parameters should be used for vBMD analysis and FEM input to avoid systematic measurement errors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2024.112426DOI Listing

Publication Analysis

Top Keywords

dect images
20
std bone
20
seqct dect
16
bone
12
vbmd
11
dect
9
images
9
image-based finite
8
finite element
8
stiffness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!